Skip to main content
Log in

Investigation on thermophysical properties of reactive powder concrete

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The thermophysical properties, such as thermal conductivity, thermal diffusivity, specific heat capacity and linear thermal expansion of reactive powder concrete (RPC) with different steel fiber volumetric fractions are investigated by means of high temperature tests. The thermophysical characteristics of RPC with different fiber volumes under different temperatures are analyzed and compared with those of the common high-strength concrete and high-performance concrete. The empirical relationships of thermophysical properties with temperature and fiber volume are identified. By the heat transfer and solid physics methods, the microscopic physical mechanism of heat transfer process and heat conduction properties of RPC are investigated, and the theoretical formulas of specific heat capacity and thermal expansion coefficient are derived, respectively. The effects of temperature and steel fibers on the specific heat capacity and the thermal expansion coefficient are quantitatively analyzed and the discriminant conditions are provided. It is shown that the experimental results are consistent with the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yazici H, Yardimci M Y, Aydin S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Construc Building Mater, 2009, 23: 1223–1231

    Article  Google Scholar 

  2. Tai Y S. Uniaxial compression tests at various loading rates for reactive powder concrete. Theore Appl Fract Mech, 2009, 52: 14–21

    Article  Google Scholar 

  3. Ju Y, Liu H B, Chen J, et al. Toughness and characterization of reactive powder concrete with ultra-high strength. Sci China Ser E-Tech Sci, 2009, 52: 1000–1018

    Article  Google Scholar 

  4. Zhang Y, Sun W, Liu S F, et al. Preparation of C200 green reactive powder concrete and its static-dynamic behaviors. Cem Concr Comp, 2008, 30: 831–838

    Article  Google Scholar 

  5. Wang Y H, Wang Z D, Liang X Y, et al. Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes. Acta Mech Solida Sinica, 2008, 21: 420–430

    MATH  Google Scholar 

  6. Lee M G, Wang Y C, Chiu C T. A preliminary study of reactive powder concrete as a new repair material. Construc Building Mater, 2007, 21: 182–189

    Article  Google Scholar 

  7. Shaheen E, Shrive N G. Optimization of mechanical properties and durability of reactive powder concrete. ACI Mater J, 2006, 103: 444–451

    Google Scholar 

  8. Fujikake K, Senga T, Ueda N, et al. Study on impact response of reactive powder concrete beam and its analytical model. J Advan Concr Tech, 2006, 4: 99–108

    Article  Google Scholar 

  9. Yan G J, Yan G P, An M Z, et al. Experimental study on 200 MPa reactive powder concrete (in Chinese). J China Railway Society, 2004, 26: 116–119

    Google Scholar 

  10. Bayard O, Plé O. Fracture mechanics of reactive powder concrete: Material modelling and experimental investigations. Engng Fract Mech, 2003, 70: 839–851

    Article  Google Scholar 

  11. Blais P Y, Couture M. Precast, prestressed pedestrian bridge -World’s first reactive powder concrete structure. PCI J, 1999, 44: 60–71

    Google Scholar 

  12. Bonneau O, Lachemi M, Dallaire E, et al. Mechanical properties and durability of two industrial reactive powder concretes. ACI Mater J, 1997, 94: 286–290

    Google Scholar 

  13. Dugat J, Roux N, Bernier G. Mechanical properties of reactive powder concretes. Mater Struct, 1996, 29: 233–240

    Article  Google Scholar 

  14. Roux N, Anreade C, Sanjuan M A. Experimental study of durability of reactive powder concretes. J Mater Civil Engng, 1996, 8: 1–6

    Article  Google Scholar 

  15. Richard P, Cheyrezy M. Composition of reactive powder concretes. Cem Concr Res, 1995, 25: 1501–1511

    Article  Google Scholar 

  16. Richard P, Cheyrezy M. Reactive powder concrete with high ductility and 200–800 MPa compressive strength. ACI SP144, 1994. 507–518

  17. Mindeguia J, Pimienta P, Noumowé A, et al. Temperature, pore pressure and mass variation of concrete subjected to high temperature-Experimental and numerical discussion on spalling risk. Cem Concr Res, 2010, 40: 477–487

    Article  Google Scholar 

  18. De Morais M V G, Pliya P, Noumowé A, et al. Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature. Nucl Engng Design, 2010, 240: 2655–2663

    Article  Google Scholar 

  19. Ghandehari M, Behnood A, Khanzadi M. Residual mechanical properties of high-strength concretes after exposure to elevated temperatures. J Mater Civil Eng, 2010, 22: 59–64

    Article  Google Scholar 

  20. He Z J, Song Y P. Triaxial strength and failure criterion of plain high-strength and high-performance concrete before and after high temperatures. Cem Concr Res, 2010, 40: 171–178

    Article  Google Scholar 

  21. Majoranaa C E, Salomonia V A, Mazzuccoa G, et al. An approach for modelling concrete spalling in finite strains. Math Comput Simulation, 2010, 80: 1694–1712

    Article  MathSciNet  Google Scholar 

  22. Fu Y F, Li L C. Study on mechanism of thermal spalling in concrete exposed to elevated temperatures. Mater Struct, 2010, 44: 361–376

    Article  Google Scholar 

  23. Han C G, Han M C, Heo Y S. Improvement of residual compressive strength and spalling resistance of high-strength RC columns subjected to fire. Construc Build Mater, 2009, 23: 107–116

    Article  Google Scholar 

  24. Biolzi L, Cattaneo S, Rosati G. Evaluating residual properties of thermally damaged concrete. Cem Concr Compos, 2008, 30: 907–916

    Article  Google Scholar 

  25. Liu X, Ye G, Schutter D, et al. On the mechanism of polypropylene fibers in preventing fire spalling in self-compacting and high-performance cement paste. Cem Concr Res, 2008, 38: 487–499

    Article  Google Scholar 

  26. Phan L T. Pore pressure and explosive spalling in concrete. Mater Struct, 2008, 41: 1623–1632

    Article  Google Scholar 

  27. Behnood A, Ziari H. Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cem Concr Comp, 2008, 30: 106–112

    Article  Google Scholar 

  28. Liu X, Yuan Y, Ye G, et al. Investigation on the mechanism of explosive spalling of high performance concrete at elevated temperatures (in Chinese). China Civil Eng J, 2008, 41: 61–68

    Google Scholar 

  29. Van der Heijden G H A, van Bijnen R M W, Pel L, et al. Moisture transport in heated concrete, as studied by NMR, and its consequences for fire spalling. Cem Concr Res, 2007, 37: 894–901

    Article  Google Scholar 

  30. Qian C X, You Y K, Li M. Effect of high temperature on permeability of high strength concrete (in Chinese). J Southeast Univ (Nat Sci Ed), 2006, 36: 283–287

    Google Scholar 

  31. Tenchev R T, Purnell P. An application of a damage constitutive model to concrete at high temperature and prediction of spalling. Int J Solids Struct, 2005, 42: 6550–6565

    Article  MATH  Google Scholar 

  32. Qian C X, You Y K. Measures for improving spalling resistance of high strength concrete exposed to fire (in Chinese). J Chin Ceram Society, 2005, 33: 846–852

    Google Scholar 

  33. Poon C S, Shui Z H, Lam L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cem Concr Res, 2004, 34: 2215–2222

    Article  Google Scholar 

  34. Li M, Qian C X, Sun W. Mechanical properties of high-strength concrete after fire. Cem Concr Res, 2004, 34: 1001–1005

    Article  Google Scholar 

  35. Gawin D, Pesavento F, Schrefler B A. Modelling of hygro-thermal behaviour and damage of concrete at temperature with thermochemical and mechanical material degradation. Comput Methods Appl Mech Eng, 2003, 192: 1731–1771

    Article  MATH  Google Scholar 

  36. Ali F. Is high strength concrete more susceptible to explosive spalling than normal strength concrete in fire? Fire Mater, 2002, 26: 127–130

    Article  Google Scholar 

  37. Hertz K D. Limits of spalling of fire-exposed concrete. Fire Safety J, 2003, 38: 103–116

    Article  Google Scholar 

  38. Kalifa P, Chéné G, Gallé C. High-temperature behavior of HPC with polypropylene fibers: From spalling to micros-tructure. Cem Concr Res, 2001, 31: 1487–1499

    Article  Google Scholar 

  39. Phan L T, Lawson J R, Davis F L. Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete. Mater Struct, 2001, 34: 83–91

    Article  Google Scholar 

  40. Kalifa P, Menneteau F, Quenard D. Spalling and pore pressure in HPC at high temperatures. Cem Concr Res, 2000, 30: 1915–1927

    Article  Google Scholar 

  41. Sun W, Luo X, Chan S. High temperature properties of high performance concrete. J Building Mater, 2000, 3: 27–32

    Google Scholar 

  42. Ulm F J, Coussy O, Bazant Z P. The “Chunnel” fire: I. Chemoplastic softening in rapidly heated concrete. J Eng Mech, 1999, 125: 272–282

    Article  Google Scholar 

  43. Nemati K M, Monteiro P J M, Cook N G W. A new method for studying stress-induced microcracks in concrete. J Mater Civil Eng, 1998, 10: 128–134

    Article  Google Scholar 

  44. Bazant Z P. Analysis of pore pressure, thermal stresses and fracture in rapidly heated concrete. In: Proc Int Workshop on Fire Performance of High-strength Concrete, NIST Spec Publ 919. Phan L T, Carino N J, Duthinh D, et al., eds. Gaithersburg: National Institute of Standards and Technology, 1997. 155–164

    Google Scholar 

  45. Anderberg Y. Spalling phenomena of HPC and OC. In: Proc Int Workshop on Fire Performance of High-strength Concrete, NIST Spec Pub 919. Phan L T, Carino N J, Duthinh D, et al., eds. Gaithersburg: National Institute of Standards and Technology, 1997. 69–73

    Google Scholar 

  46. Lin W M, Lin T D, Powers-Couche L J. Microstructures of fire damaged concrete. ACI Mater J, 1996, 93: 199–205

    Google Scholar 

  47. Connolly R J. The Spalling of Concrete in Fires. Dissertation of Doctoral Degree. Birmingham: Aston University, 1995

    Google Scholar 

  48. Kristensen L, Hansen T C. Cracks in concrete core due to fire or thermal heating shock. ACI Mater J, 1994, 91: 453–459

    Google Scholar 

  49. Sanjayan G, Stocks L J. Spalling of high-strength silica fume concrete in fire. ACI Mater J, 1993, 90: 170–173

    Google Scholar 

  50. Dougill J W. Modes of failure of concrete panels exposed to high temperatures. Mag Concr Res, 1972, 24: 71–76

    Google Scholar 

  51. Shorter G W, Harmathy T Z. Discussion on the fire resistance of prestressed concrete beams. Proc Inst Civil Engrs, 1961, 20: 313

    Google Scholar 

  52. Tai Y S, Pan H H, Kung Y N. Residual strength and deformation of steel fiber reinforced reactive powder concrete after elevated temperature. J CICHE, 2010, 22: 43–54

    Google Scholar 

  53. Liu C T, Huang J S. Fire performance of highly flowable reactive powder concrete. Construc Build Mater, 2009, 23: 2072–2079

    Article  Google Scholar 

  54. Yang S W, Liu L M, Wang Y W, et al. SHPB experiment of steel fiber reactive powder concrete exposed to high temperature. J Si Chuan Univ (Eng Sci Ed), 2010, 42: 25–29

    Google Scholar 

  55. Liu H B, Li K L, Ju Y, et al. Explosive spalling of steel fiber reinforced reactive powder concrete subject to high temperature (in Chinese). Concr, 2010, 8: 6–8

    Google Scholar 

  56. Ali F, Nadjai A, Choi S. Numerical and experimental investigation of the behavior of high strength concrete columns in fire. Engng Struct, 2010, 32: 1236–1243

    Article  Google Scholar 

  57. Feist C, Matthias A, Günter H. Numerical simulation of the load-carrying behavior of RC tunnel structures exposed to fire. Finite Elem Analy Des, 2009, 45: 958–965

    Article  Google Scholar 

  58. Amina M N, Kima J S, Leeb Y, et al. Simulation of the thermal stress in mass concrete using a thermal stress measuring device. Cem Concr Res, 2009, 39: 154–164

    Article  Google Scholar 

  59. Di Luzioa G, Cusati G. Hygro-thermo-chemical modeling of high performance concrete. I: Theory. Cem Concr Comp, 2009, 31: 301–308

    Article  Google Scholar 

  60. Di Luzioa G, Cusati G. Hygro-thermo-chemical modeling of high-performance concrete. II: Numerical implementation, calibration, and validation. Cem Concr Comp, 2009, 31: 309–324

    Article  Google Scholar 

  61. Kamen A, Denariéa E, Sadoukia H, et al. Thermomechanical response of UHPFRC at early age — Experimental study and numerical simulation. Cem Concr Res, 2008, 38: 822–831

    Article  Google Scholar 

  62. Fu Y F, Wong Y L, Poon C S, et al. Numerical tests of thermal cracking induced by temperature gradient in cement-based composites under thermal loads. Cem Concr Comp, 2007, 29: 103–116

    Article  Google Scholar 

  63. Li X K, Li R T, Schrefler B A. A coupled chemo-thermo- hydromechanical model of concrete at high temperature and failure analysis. Int J Num Analy Meth Geomech, 2006, 30: 635–681

    Article  MATH  Google Scholar 

  64. Chung J H, Consolazioa G R, McVay M C. Finite element stress analysis of a reinforced high-strength concrete column in severe fires. Comp Struct, 2006, 84: 1338–1352

    Article  Google Scholar 

  65. Sengula O, Azizi S, Karaosmanoglu F, et al. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Buildings, 2011, 43: 671–676

    Article  Google Scholar 

  66. Xiao J Z, Song Z W, Zhang F. An experimental study on thermal conductivity of concrete (in Chinese). J Building Mater, 2010, 13: 17–21

    Google Scholar 

  67. Smith J T, Tighe S L. Recycled concrete aggregate coefficient of thermal expansion: Characterization, variability, and impacts on pavement performance. Trans Res Rec, 2009, 2113: 53–61

    Article  Google Scholar 

  68. Uygunoǧlu T, Topçu I B. Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature. Construc Building Mater, 2009, 23: 3063–3069

    Article  Google Scholar 

  69. Noumowe A, Siddique R, Ranc G. Thermo-mechanical characteristics of concrete at elevated temperatures up to 310°C. Nucl Engng Des, 2009, 23: 470–476

    Article  Google Scholar 

  70. Qian C X, Zhu C F. Influence of mineral admixtures and Air-Entraining agent on thermal expansion property of Cement-based materials. J Building Mater, 2009, 12: 310–314

    Google Scholar 

  71. Zhang F. An Experimental Study on Thermal Conductivity of Concrete (in Chinese). Dissertation of Masteral Degree. Shanghai: Tong Ji University, 2009

    Google Scholar 

  72. Wang W. Study on Thermal Expansion and Thermal Conductivity of Ultra High Toughness Cementitious Composites (in Chinese). Dissertation of Masteral Degree. Dalian: Dalian University of Technology, 2009

    Google Scholar 

  73. Shahiq K M, Prasad J, Suman B M. Thermal properties of high volume fly ash concrete. Indian J Concr, 2008, 82: 35–40

    Google Scholar 

  74. Mňahončáková E, Pavlíková M, Grzeszczyk S, et al. Hydric, thermal and mechanical properties of self-compacting concrete containing different fillers. Construc Building Mater, 2008, 22: 1594–1600

    Article  Google Scholar 

  75. Childs P, Wong A C L, Gowripalan N, et al. Measurement of the coefficient of thermal expansion of ultra-high strength cementitious composites using fiber optic sensors. Cem Concr Res, 2007, 37: 789–795

    Article  Google Scholar 

  76. Yao W, Zhen X. Effect of mix proportion on coefficient of thermal expansion of concrete (in Chinese). J Tong Ji Univ (Nat Sci Ed), 2007, 35: 77–87

    Google Scholar 

  77. Bijan A Z, Lars B, Ulf W. Using the TPS method for determining the thermal properties of concrete and wood at elevated temperature. Fire Mater, 2006, 30: 359–369

    Article  Google Scholar 

  78. Won M. Improvements of testing procedures for concrete coefficient of thermal expansion. Trans Res Rec, 2005, 1919: 23–28

    Article  Google Scholar 

  79. Joseph L, Donath M. New measurement of thermal properties of superpave asphalt concrete. J Mater Civil Engng, 2005, 17: 72–79

    Article  Google Scholar 

  80. ERMCO. The European guidelines for self-compacting concrete specification, production and use. The European Readymix Concrete Organization, 2005. 10–68

  81. Rodur V K R, Sultan M A. Effect of temperature on thermal properties of high-strength concrete. J Mater Civil Engng, 2003, 15: 101–107

    Article  Google Scholar 

  82. Dos Santos W N. Effect of moisture and porosity on the thermal properties of a conventional refractory concrete. J Eur Ceram Soc, 2003, 23: 745–755

    Article  Google Scholar 

  83. Li Q B, Yuan L B, Ansari F. Model for measurement of thermal expansion coefficient of concrete by fiber optic sensor. Int J Solids Struct, 2002, 39: 2927–2937

    Article  MATH  Google Scholar 

  84. Shin K Y, Kim S B, Kim J H, et al. Thermo-physical properties and transient heat transfer of concrete at elevated temperatures. Nucl Engng Des, 2002, 212: 233–241

    Article  Google Scholar 

  85. VanGeem M G, Gajda J, Dombrowski K. Thermal properties of commercially available high-strength concretes. Cem Concr Aggreg, 1997, 19: 38–54

    Article  Google Scholar 

  86. Vodák F, Černý R, DrchaIová J, et al. Thermo-physical properties of concrete for nuclear-safety related structures. Cem Concr Res, 1997, 27: 415–426

    Article  Google Scholar 

  87. Neville A M. Properties of Concrete. New York: John Wiley & Sons, 1995

    Google Scholar 

  88. Shah P, Ahmad S H. High Performance Concretes and Applications. 90 Tottenham Court Road, London W1P 9HE, 1994. 141–374

  89. HoffG C. High strength lightweight concrete for Arctic applications — Part2, ACI Symp Performance of Lightweight Concrete. Dallas, Texas, 1991. SP 136–2

  90. Marshall A L. The thermal properties of concrete. Building Sci, 1972, 7: 167–174

    Article  Google Scholar 

  91. Cheyrezy M, Maret V, Frouin L. Microstructural analysis of RPC (reactive powder concrete). Cem Concr Res, 1995, 25: 1491–1500

    Article  Google Scholar 

  92. Ju Y, Jia Y D, Liu H B, et al. Mesomechanism of steel fiber reinforcement and toughening of reactive powder concrete. Sci China Ser E-Tech Sci, 2007, 50: 815–832

    Article  Google Scholar 

  93. Liu H B. Preparation Technology and Mechanical Properties of Reactive Powder Concrete (in Chinese). Dissertation of Masteral Degree. Beijing: China University of Mining and Technology, 2006

    Google Scholar 

  94. Yu F, Zhang X X, Gao G N. Thermal conductivity measurement o f semitransparent solids by Hot-wire technique. Acta Metrologica Sinica, 1998, 19: 112–118

    Google Scholar 

  95. Standard of the People’s Republic of China. Refractory Materials-Determination of Thermal Conductivity-Hot-wire Method GB/T 5990-2006 (in Chinese). Beijing: General Administration of Quality Supervision, Inspection and Quarantine, the People’s Republic of China, 2006

    Google Scholar 

  96. Wang D, Sun X H, Zhao W P, et al. Principle and method of refractory thermal conductivity measurement by laser flash method. Meas Testing Tech, 2009, 36: 38–39

    Google Scholar 

  97. Parker W J, Jenkins R J, Butler C P. Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J Appl Phys, 1961, 32: 1679–1684

    Article  Google Scholar 

  98. Turcotte D L, Schubert G. Geodynamics. 2nd ed. Cambridge: Cambridge University Press, 2002. 171–174

    Google Scholar 

  99. Lu Z D. A Research on Fire Response of Reinforced Concrete Beams (in Chinese). Dissertation of Doctoral Degree. Shanghai: Tong Ji University, 1989

    Google Scholar 

  100. Jia D C, Song G M. Properties of Inorganic Nonmetallic Materials (in Chinese). Beijing: Science Publishing House, 2008

    Google Scholar 

  101. Incropera F P, Dewitt D P, Lavine A S, et al. Fundamentals of Heat and Mass Transfer. 5th ed. New York: John Wiley & Sons, 2002

    Google Scholar 

  102. Zhao Z N. Heat Transfer (in Chinese). Beijing: Higher Education Press, 2002

    Google Scholar 

  103. Touloukian Y S, Powell R W, Ho C Y, et al. Thermophysical Properties of Matter — The TPRC Data Series. V1, Thermal Conductivity — Metallic Elements and Alloys. New York: IFI/Plenum, 1970

    Google Scholar 

  104. Hu A, Zang W Y. Solid State Physics (in Chinese). Beijing: Higher Education Press, 2008

    Google Scholar 

  105. Shankar R. Principles of Quantum Mechanics. 2nd ed. New York: Springer, 1994

    MATH  Google Scholar 

  106. Ashcroft N W, Mermin N D. Solid State Physics. New York: Holt, Rinehart and Winston, 1976

    Google Scholar 

  107. Sun J, Bai Y Z, Yang T P, et al. Growth and electrical properties of zno films deposited on freestanding thick diamond films. J Jilin Univ (Sci Ed), 2007, 45: 822–826

    Google Scholar 

  108. Sheng G H. Dynamic Mechanical Properties of Reactive Powder Concrete under Impact Loading (in Chinese). Dissertation of Masteral Degree. Beijing: China University of Mining &Technology, 2009

    Google Scholar 

  109. ASTM. Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis E 831, Annual Book of ASTM Standards, ASTM, 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, Y., Liu, H., Liu, J. et al. Investigation on thermophysical properties of reactive powder concrete. Sci. China Technol. Sci. 54, 3382–3403 (2011). https://doi.org/10.1007/s11431-011-4536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4536-4

Keywords

Navigation