Skip to main content
Log in

Flow structures in flat plate boundary layer induced by pulsed plasma actuator

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The flow field in the flat plate boundary layer induced by the pulsed plasma actuator was simulated by solving the Navier-Stokes equations with a phenomenological DBD plasma model. The effects of actuation strength, wave form and frequency on the flow structures induced by the unsteady pulsed plasma actuator were investigated. The results indicated that a series of vortex pairs were formed in the boundary layer, and decayed in downstream convection following the exponential law. The strength of vortex pair was dominated by the effective plasma actuation strength, and the vortex streamwise spacing depended on the actuation frequency. If the duty cycle is not so large that interaction of adjacent vortex pairs can be negligible, then the actuation wave form has little influence on the vortex pair induced by the unsteady plasma actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roth J R, Sherman D M, Wilkinson S P. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. Technical Report, AIAA Paper 98-0328. 1998

  2. Jukes T N, Choi K S, Johnson G A, et al. Turbulent boundary layer control for dray reduction using surface plasma. Technical Report, AIAA Paper 2004-2216. 2004

  3. Zhang P F, Yan B, Wang J J. Novel circulation control method by plasma actuator. Technical Report, AIAA Paper 2010-5105. 2010

  4. Zhang P F, Liu A B, Wang J J. Aerodynamic modification of a NACA 0012 airfoil by trailing-edge plasma Gurney flap. AIAA J, 2009, 47: 2467–2474

    Article  MathSciNet  Google Scholar 

  5. Corke T C, Jumper E J, Post M L, et al. Application of weakly-ionized plasmas as wing flow-control devices. Technical Re-port, AIAA Paper 2002-0350. 2002

  6. van Dyken R D, Mclaughlin T E, Enloe C L. Parametric investigation of a single dielectric barrier discharge plasma actuator. Technical Report, AIAA Paper 2004-846. 2004

  7. Sosa R, Artana G. Steady control of laminar separation over airfoils with plasma sheet actuators. J Electrostat, 2006, 64: 604–610

    Article  Google Scholar 

  8. Post M L, Corke T C. Separation control on high angle of attack airfoil using plasma actuators. Technical Report, AIAA Paper 2003-1024. 2003

  9. Corke T C, He C, Patel M P. Plasma flaps and slats: An application of weakly-ionized plasma actuators. Technical Report, AIAA Paper 2004-2127. 2004

  10. Visbal M R, Gaitonde D V, Roy S. Control of transitional and turbulent flows using plasma-based actuators. Technical Report, AIAA Paper 2006-3230. 2006

  11. Bowles P O, Corke T C. Stall detection on a leading-edge plasma actuated pitching airfoil utilizing onboard measurement. Technical Report, AIAA Paper 2009-93. 2009

  12. Li G, Xu Y J, Lin B, et al. Control of endwall secondary flow in a compressor cascade with dielectric barrier discharge plasma actuation. Sci China Ser E-Tech Sci, 2009, 52: 3715–3721

    Article  Google Scholar 

  13. Nie C Q, Li G, Zhu J Q, et al. Investigation of dielectric barrier discharge plasma flow control. Sci China Ser E-Tech Sci, 2008, 51: 1064–1072

    Article  Google Scholar 

  14. Kim D, Wang M. Large-eddy simulation of flow over a circular cylinder with plasma-based control. Technical Report, AIAA Paper 2009-1080. 2009

  15. Thomas F O, Kozlov A, Corke T C. Plasma actuators for bluff body flow control. Technical Report, AIAA Paper 2006-2845. 2006

  16. Asghar A, Jumper E J. Phase synchronization of vortex shedding form two side-by-side circular cylinders using plasma actuators. Technical Report, AIAA Paper 2003-1028. 2003

  17. Corke T C, Post M L, Orlov D M. Single dielectric barrier discharge plasma enhanced aerodynamics: Physics, modeling and applications. Exp Fluid, 2009, 46: 1–26

    Article  Google Scholar 

  18. Moreau E. Airflow control by non-thermal plasma actuators. J Phys D-Appl Phys, 2007, 40: 605–636

    Article  Google Scholar 

  19. Jayaraman B, Shyy W. Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer. Prog Aerospace Sci, 2008, 44: 139–191

    Article  Google Scholar 

  20. Visbal M R, Gaitonde D V. Control of vertical flows using simulated plasma actuators. Technical Report, AIAA Paper 2006-505. 2006

  21. Shyy W, Jayaraman B, Anderson A. Modeling of glow discharge-induced fluid dynamics. J Appl Phys, 2002, 92: 6434–6443

    Article  Google Scholar 

  22. Jayaraman B, Lian Y, Shyy W. Low-Reynolds number flow control using dielectric barrier discharge actuators. Technical Report, AIAA Paper 2007-3974. 2007

  23. Gaitonde D V, Visbal M R, Roy S. Control of flow past a wing section with plasma-based body forces. Technical Report, AIAA Paper 2005-5302. 2005

  24. Jayaraman B, Shyy W. Flow control and thermal management using dielectric glow discharge concepts. Technical Report, AIAA Paper 2007-3712. 2007

  25. Orlov D, Apker T, He C, et al. Modeling and experiment of leading edge separation control using SDBD plasma actuators. Technical Report, AIAA Paper 2007-0877. 2007

  26. He C, Corke T C, Patel M P. Numerical and experimental analysis of plasma flow control over a hump model. Technical Report, AIAA Paper 2007-0935. 2007

  27. Rizzetta D, Visbal M. Numerical investigation of plasma-based flow control for a transitional highly-loaded low-pressure turbine. Technical Report, AIAA Paper 2007-0938. 2007

  28. Vo H. Control of rotating stall in axial compressors using plasma actuators. Technical Report, AIAA Paper 2007-3845. 2007

  29. Lemire S, Vo H D, Benner M W. Performance improvement of axial compressors and fans with plasma actuation. Int J Rotat Mach, 2009, 2009: 1–3

    Article  Google Scholar 

  30. Fu X, Li Y, Li B, et al. Drag force reduction on an airfoil via glow discharge plasma-based control. Eur Phys J, 2009, 171: 195–204

    Google Scholar 

  31. Gaitonde D V, Visbal M R, Roy S. A coupled approach for plasma-based flow control simulations of wing sections. Technical Report, AIAA Paper 2006-1205. 2006

  32. Jayaraman B, Cho Y C, Shyy W. Modeling of dielectric barrier discharge plasma actuator. Technical Report, AIAA Paper 2007-4531. 2007

  33. Grundmann S, Klumpp S, Tropea C. Experimental and numerical investigations of boundary-layer influence using plasma-actuators. In: Active Flow Control 2006, Berlin, Germany, 2006. 56–68

  34. Corke T C, Matlis E. Phased plasma arrays for unsteady flow control. Technical Report, AIAA Paper 2000-2323. 2000

  35. Schlichting H, Gersten K. Boundary-Layer Theory. Heidelberg: Springer, 2000

    MATH  Google Scholar 

  36. Mittal R, Rampunggoon P. On the virtual aeroshaping effect of synthetic jets. Phys Fluid, 2002, 14: 1533–1536

    Article  Google Scholar 

  37. Mittal R, Rampunggoon P. Interaction of synthetic jet with a flat plate boundary layer. Technical Report, AIAA Paper 01-31243. 2001

  38. Zhang P F, Wang J J, Feng L H. Review of zero-net-mass-flux jet and its application in separation flow control. Sci China Ser E-Tech Sci, 2008, 51: 1315–1344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinJun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Liu, A. & Wang, J. Flow structures in flat plate boundary layer induced by pulsed plasma actuator. Sci. China Technol. Sci. 53, 2772–2782 (2010). https://doi.org/10.1007/s11431-010-4100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4100-7

Keywords

Navigation