Skip to main content
Log in

The 2020–2021 prolonged La Niña evolution in the tropical Pacific

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The evolution of sea surface temperature (SST) in the tropical Pacific during 2020–2021 indicates a second-year cooling in late 2021 again, following the 2020 La Niña event. Its physical explanations are still lacking, and there is a clear need to understand the underlying processes involved. Observational data and reanalysis products are used to describe the characteristics and spatiotemporal evolution of upper-ocean thermal anomalies; an intermediate coupled model (ICM) is also used to perform numerical experiments to confirm these observation-based inferences. The evolution of subsurface thermal anomalies is critically important to that of SST in the central-eastern equatorial Pacific; the effects of the former on the latter can be well represented by the temperature of subsurface waters entrained into the mixed layer (Te), a field that reflects a subsurface forcing on SST. The SST evolution is sensitively dependent on the intensities of the local effect associated with Te anomalies in the eastern equatorial Pacific and the remote effect associated with subsurface anomalies from the western Pacific. During early- and mid-2021, a competition was present between these local and remote effects associated with Te anomalies. When the remote warming effect dominates the local cooling effect, the cold SST condition in the east is likely to turn into neutral and warm conditions; otherwise, it tends to continue. In addition, the negative Te anomalies were sustained and enhanced by off-equatorial processes due to equatorial wave reflections at the eastern boundary associated with the 2020 La Niña event. The SST evolution in mid-2021 corresponded to a situation in which the warming effect associated with positive subsurface thermal anomalies from the west were not strong enough to counteract the local cooling effect associated with negative anomalies in the east. In due course, cold SST anomalies in the east developed again and the second-year cooling reoccurred in late 2021, with a turning point in June 2021. Modeling experiments support these arguments and indicate that the intensity of subsurface thermal effect on SST, as represented by Te anomalies, needs to be adequately depicted for coupled models to capture the 2021 second-year cooling conditions in the tropical Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnston A G, Tippett M K, L’Heureux M L, Li S, DeWitt D G. 2012. Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull Am Meteorol Soc, 93: 631–651

    Article  Google Scholar 

  • Bjerknes J. 1969. Atmospheric teleconnections from the equatorial pacific. Mon Weather Rev, 97: 163–172

    Article  Google Scholar 

  • Cai W J, Wang G J, Dewitte B, Wu L X, Santoso A, Takahashi K, Yang Y, Carréric A, McPhaden M J. 2018. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564: 201–206

    Article  Google Scholar 

  • Cane M A, Zebiak S E, Dolan S C. 1986. Experimental forecasts of El Niño. Nature, 321: 827–832

    Article  Google Scholar 

  • Chen D K, Zebiak S E, Busalacchi A J, Cane M A. 1995. An improved procedure for EI Niño forecasting: Implications for predictability. Science, 269: 1699–1702

    Article  Google Scholar 

  • Chen D K, Lian T, Fu C B, Cane M A, Tang Y M, Murtugudde R, Song X S, Wu Q Y, Zhou L. 2015. Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci, 8: 339–345

    Article  Google Scholar 

  • DiNezio P N, Deser C, Okumura Y, Karspeck A. 2017. Predictability of 2-year La Niña events in a coupled general circulation model. Clim Dyn, 49: 4237–4261

    Article  Google Scholar 

  • Dommenget D, Bayr T, Frauen C. 2013. Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn, 40: 2825–2847

    Article  Google Scholar 

  • Fang X F, Xie R H. 2020. A brief review of ENSO theories and prediction. Sci China Earth Sci, 63: 476–491

    Article  Google Scholar 

  • Fedorov A V, Philander S G. 2000. Is El Nino changing? Science, 288: 1997–2002

    Article  Google Scholar 

  • Feng L C, Zhang R H, Wang Z G, Chen X R. 2015. Processes leading to second-year cooling of the 2010–12 La Niña event, diagnosed using GODAS. Adv Atmos Sci, 32: 424–438

    Article  Google Scholar 

  • Feng L C, Liu F, Zhang R H, Han X, Yu B, Gao C. 2021. On the second-year warming in late 2019 over the tropical Pacific and its attribution to an indian ocean dipole event. Adv Atmos Sci, 38: 2153–2166

    Article  Google Scholar 

  • Gao C, Zhang R H. 2017. The roles of atmospheric wind and entrained water temperature (Te) in the second-year cooling of the 2010–12 La Niña event. Clim Dyn, 48: 597–617

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan R J, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J. 2020. The ERA5 global reanalysis. Q J R Meteorol Soc, 146: 1999–2049

    Article  Google Scholar 

  • Hu Z Z, Kumar A, Xue Y, Jha B. 2014. Why were some La Niñas followed by another La Niña? Clim Dyn, 42: 1029–1042

    Article  Google Scholar 

  • Hu Z Z, Kumar A, Huang B, Zhu J, L’Heureux M, McPhaden M J, Yu J Y. 2020. The interdecadal shift of ENSO properties in 1999/2000: A review. J Clim, 33: 4441–4462

    Article  Google Scholar 

  • Huang B, Thorne P W, Banzon V F, Boyer T, Chepurin G, Lawrimore J H, Menne M J, Smith T M, Vose R S, Zhang H M. 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J Clim, 30: 8179–8205

    Article  Google Scholar 

  • Jin F F, An S I. 1999. Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett, 26: 2989–2992

    Article  Google Scholar 

  • Keenlyside N, Kleeman R. 2002. Annual cycle of equatorial zonal currents in the Pacific. J Geophys Res, 107: 3093

    Article  Google Scholar 

  • Latif M, Kleeman R, Eckert C. 1997. Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J Clim, 10: 2221–2239

    Article  Google Scholar 

  • Lee S K, Park W, Baringer M O, Gordon A L, Huber B, Liu Y. 2015. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat Geosci, 8: 445–449

    Article  Google Scholar 

  • Li X, Hu Z Z, Tseng Y, Liu Y, Liang P. 2022. A historical perspective of the La Niña event in 2020/2021. JGR-Atmos, 127: e2021JD035546

    Google Scholar 

  • Lian T, Chen D K, Tang Y M. 2017. Genesis of the 2014–2016 El Niño events. Sci China Earth Sci, 60: 1589–1600

    Article  Google Scholar 

  • Liu F, Gao C C, Chai J, Robock A, Wang B, Li J B, Zhang X, Huang G, Dong W J. 2022. Tropical volcanism enhanced the East Asian summer monsoon during the last millennium. Nat Commun, 13: 3429

    Article  Google Scholar 

  • Luo Y, Rothstein L M, Zhang R H. 2009. Response of Pacific subtropical-tropical thermocline water pathways and transports to global warming. Geophys Res Lett, 36: L04601

    Google Scholar 

  • McCreary J P. 1981. A linear stratified ocean model of the equatorial undercurrent. Phil Trans R Soc Lond A, 298: 603–635

    Article  Google Scholar 

  • McPhaden M J, Santoso A, Cai W. 2020. El Niño Southern Oscillation in a Changing Climate. AGU Monograph, Vol. 253. Hoboken: John Wiley & Sons, Inc.

    Book  Google Scholar 

  • Mu M, Xu H, Duan W. 2007. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys Res Lett, 34: L03709

    Article  Google Scholar 

  • Mukhopadhyay S, Gnanaseelan C, Chowdary J S, Parekh A, Mohapatra S. 2022. Prolonged La Niña events and the associated heat distribution in the Tropical Indian Ocean. Clim Dyn, 58: 2351–2369

    Article  Google Scholar 

  • Reynolds R W, Rayner N A, Smith T M, Stokes D C, Wang W. 2002. An improved in situ and satellite SST analysis for climate. J Clim, 15: 1609–1625

    Article  Google Scholar 

  • Tang Y M, Zhang R H, Liu T, Duan W S, Yang D J, Zheng F, Ren H, Lian T, Gao C, Chen D K, Mu M. 2018. Progress in ENSO prediction and predictability study. Natl Sci Rev, 5: 826–839

    Article  Google Scholar 

  • Tian F, Zhang R H, Wang X. 2021. Indian Ocean warming as a potential trigger for super phytoplankton blooms in the eastern equatorial Pacific from El Niño to La Niña transitions. Environ Res Lett, 16. https://doi.org/10.1088/1748-9326/abf76f

  • Wang C Z. 2018. A review of ENSO theories. Natl Sci Rev, 5: 813–825

    Article  Google Scholar 

  • Wang H J, Fan K, Sun J, Li S, Lin Z, Zhou G, Chen L, Lang X, Li F, Zhu Y, Chen H, Zheng F. 2015. A review of seasonal climate prediction research in China. Adv Atmos Sci, 32: 149–168

    Article  Google Scholar 

  • Yeh S W, Kug J S, Dewitte B, Kwon M H, Kirtman B P, Jin F F. 2009. El Niño in a changing climate. Nature, 461: 511–514

    Article  Google Scholar 

  • Zebiak S E, Cane M A. 1987. A model El Niño-Southern Oscillation. Mon Weather Rev, 115: 2262–2278

    Article  Google Scholar 

  • Zhang R H, Gao C. 2016. The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event. Sci Bull, 61: 1061–1070

    Article  Google Scholar 

  • Zhang R H, Gao C. 2017. Processes involved in the second-year warming of the 2015 El Niño event as derived from an intermediate ocean model. Sci China Earth Sci, 60: 1601–1613

    Article  Google Scholar 

  • Zhang R H, Gao C, Feng L. 2022. Recent ENSO evolution and its real-time prediction challenges. Natl Sci Rev, 9: nwac052

    Article  Google Scholar 

  • Zhang R H, Kleeman R, Zebiak S E, Keenlyside N, Raynaud S. 2005. An empirical parameterization of subsurface entrainment temperature for improved SST anomaly simulations in an intermediate ocean model. J Clim, 18: 350–371

    Article  Google Scholar 

  • Zhang R H, Rothstein L M, Busalacchi A J. 1998. Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature, 391: 879–883

    Article  Google Scholar 

  • Zhang R H, Yu Y, Song Z, Ren H L, Tang Y, Qiao F, Wu T, Gao C, Hu J, Tian F, Zhu Y, Chen L, Liu H, Lin P, Wu F, Wang L. 2020. A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. J Ocean Limnol, 38: 930–961

    Article  Google Scholar 

  • Zheng F, Zhang W, Yu J, Chen Q. 2015. A possible bias of simulating the post-2000 changing ENSO. Sci Bull, 60: 1850–1857

    Article  Google Scholar 

  • Zhou Z Q, Xie S P, Zhang R. 2021. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc Natl Acad Sci USA, 118: e2022255118

    Article  Google Scholar 

  • Zhu J, Huang B, Marx L, Kinter James L I, Balmaseda M A, Zhang R H, Hu Z Z. 2012. Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys Res Lett, 39: L09602

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their comments and suggestions that helped to improve the original manuscript. Chuan GAO was supported by the Laoshan Laboratory (Grant No. 2022LSL010301-2), the National Natural Science Foundation of China (Grant No. 42176032), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB 42000000). Rong-Hua ZHANG was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA19060102 and XDB 40000000) and the National Natural Science Foundation of China (Grant No. 42030410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Chen, M., Zhou, L. et al. The 2020–2021 prolonged La Niña evolution in the tropical Pacific. Sci. China Earth Sci. 65, 2248–2266 (2022). https://doi.org/10.1007/s11430-022-9985-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-9985-4

Keywords

Navigation