Skip to main content
Log in

A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the earth sciences

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

We proposed a new laser analytical mode, which used the high-frequency laser ablation to deliberately obtain the peak-shape signal profile, combined with the linear regression calibration (LRC) method to calculate elemental or isotopic ratios. In order to access the performance of the new laser analytical mode for the application in the field of earth science, we systematically investigated the elemental quantitative analysis with high spatial resolution (10 µm), rapid U-Pb dating in zircons and accurate Sr-Hf isotope analysis in geological samples. The new high-frequency laser analysis technology (20 Hz, 100 pulses) reduced the limit of detection (LOD) of 25 elements to 0.005–0.16 µg g−1 with crater diameters of 10 µm, which are significantly lower (decrease to 2–20%) than previous researches. The quantitative analysis of five silicate glass reference materials showed that the precision and accuracy of the 25 trace elements (with the concentration ranging from 0.17 to 683 µg g−1) were better than 16% and 15%, respectively. The new methods raised the analytical throughput of zircon U-Pb dating, Sr isotope ratios and Hf isotope ratios to 250 analyses per hour, 144 analyses per hour and 120 analyses per hour in theory, while the analytical accuracy and precision did not be compromised. The detailed investigations showed that the proposed new laser analytical mode has good application effects in the field of earth sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht M, Derrey I T, Horn I, Schuth S, Weyer S. 2014. Quantification of trace element contents in frozen fluid inclusions by UV-fs-LA-ICP-MS analysis. J Anal At Spectrom, 29: 1034–1041

    Article  Google Scholar 

  • Audétat A, Garbe-Schönberg D, Kronz A, Pettke T, Rusk B, Donovan J J, Lowers H A. 2015. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostand Geoanal Res, 39: 171–184

    Article  Google Scholar 

  • Batanova V G, Sobolev A V, Kuzmin D V. 2015. Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem Geol, 419: 149–157

    Article  Google Scholar 

  • Black L P, Gulson B L. 1978. The age of the Mud Tank carbonatite, strangways range, northern territory. BMR J Aust Geol Geophys, 3: 227–232

    Google Scholar 

  • Bolea-Fernández E, Balcaen L, Resano M, Vanhaecke F. 2017. Overcoming spectral overlap via inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). A tutorial review. J Anal At Spectrom, 32: 1660–1679

    Article  Google Scholar 

  • Bouchet S, Bérail S, Amouroux D. 2018. Hg compound-specific isotope analysis at ultratrace levels using an on line gas chromatographic preconcentration and separation strategy coupled to multicollector-in-ductively coupled plasma mass spectrometry. Anal Chem, 90: 7809–7816

    Article  Google Scholar 

  • Cawood P A, Hawkesworth C J, Dhuime B. 2012. Detrital zircon record and tectonic setting. Geology, 40: 875–878

    Article  Google Scholar 

  • Chew D, Drost K, Petrus J A. 2019. Ultrafast, > 50 Hz LA-ICP-MS spot analysis applied to U-Pb dating of zircon and other U-bearing minerals. Geostand Geoanal Res, 43: 39–60

    Article  Google Scholar 

  • Cooper G F, Macpherson C G, Blundy J D, Maunder B, Allen R W, Goes S, Collier J S, Bie L, Harmon N, Hicks S P, Iveson A A, Prytulak J, Rietbrock A, Rychert C A, Davidson J P, Cooper G F, Macpherson C G, Blundy J D, Maunder B, Allen RW, Goes S, Collier J S, Bie L, Harmon N, Hicks S P, Rietbrock A, Rychert C A, Davidson J P, Davy R G, Henstock T J, Kendall M J, Schlaphorst D, van Hunen J, Wilkinson J J, Wilson M. 2020. Variable water input controls evolution of the Lesser Antilles volcanic arc. Nature, 582: 525–529

    Article  Google Scholar 

  • Cottle J M, Kylander-Clark A R, Vrijmoed J C. 2012. U-Th/Pb geochronology of detrital zircon and monazite by single shot laser ablation inductively coupled plasma mass spectrometry (SS-LA-ICPMS). Chem Geol, 332–333: 136–147

    Article  Google Scholar 

  • Evans G N, Tivey M K, Monteleone B, Shimizu N, Seewald J S, Rouxel O J. 2020. Trace element proxies of seafloor hydrothermal fluids based on secondary ion mass spectrometry (SIMS) of black smoker chimney linings. Geochim Cosmochim Ac, 269: 346–375

    Article  Google Scholar 

  • Fietzke J, Liebetrau V, Günther D, Gürs K, Hametner K, Zumholz K, Hansteen T H, Eisenhauer A. 2008. An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates. J Anal At Spectrom, 23: 955–961

    Article  Google Scholar 

  • Gonzalez J, Mao X L, Roy J, Mao S S, Russo R E. 2002. Comparison of 193, 213 and 266 nm laser ablation ICP-MS. J Anal At Spectrom, 17: 1108–1113

    Article  Google Scholar 

  • Gourgiotis A, Manhès G, Martelat B, Isnard H. 2017. Deconvolution of the isotopic drift in LC-MC-ICPMS coupling: A new tool for studying isotope fractionation induced by sample introduction techniques. J Anal At Spectrom, 32: 1428–1434

    Article  Google Scholar 

  • Gray A L. 1985. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst, 110: 551–556

    Article  Google Scholar 

  • Green T H, Blundy J D, Adam J, Yaxley G M. 2000. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lithos, 53: 165–187

    Article  Google Scholar 

  • Günther D, Horn I, Hattendorf B. 2000. Recent trends and developments in laser ablation-ICP-mass spectrometry. Fresen J Anal Chem, 368: 4–14

    Article  Google Scholar 

  • He T, Ni Q, Miao Q, Li M. 2018. Effects of cone combinations on the signal enhancement by nitrogen in LA-ICP-MS. J Anal At Spectrom, 33: 1021–1030

    Article  Google Scholar 

  • Heinrich C A, Pettke T, Halter W E, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I. 2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Ac, 67: 3473–3497

    Article  Google Scholar 

  • Hofmann A E, Baker M B, Eiler J M. 2014. Sub-micron-scale trace-element distributions in natural zircons of known provenance: Implications for Ti-in-zircon thermometry. Contrib Mineral Petrol, 168: 1057

    Article  Google Scholar 

  • Hu Z C, Liu Y S, Li M, Gao S, Zhao L S. 2009. Results for rarely determined elements in MPI-DING, USGS and NIST SRM glasses using laser ablation ICP-MS. Geostandards Geoanal Res, 33: 319–335

    Article  Google Scholar 

  • Hu Z C, Gao S, Liu Y S, Hu S H, Chen H H, Yuan H L. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal At Spectrom, 23: 1093–1101

    Article  Google Scholar 

  • Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J Anal At Spectrom, 27: 1391–1399

    Article  Google Scholar 

  • Hu Z C, Zhang W, Liu Y S, Gao S, Li M, Zong K Q, Chen H H, Hu S H. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Anal Chem, 87: 1152–1157

    Article  Google Scholar 

  • Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 211: 47–69

    Article  Google Scholar 

  • Jaffey A H, Flynn K F, Glendenin L E, Bentley W C, Essling A M. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C, 4: 1889–1906

    Article  Google Scholar 

  • Jochum K P, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann A W. 2005. GeoReM: A new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res, 29: 333–338

    Article  Google Scholar 

  • Jochum K P, Scholz D, Stoll B, Weis U, Wilson S A, Yang Q, Schwalb A, Börner N, Jacob D E, Andreae M O. 2012. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem Geol, 318–319: 31–44

    Article  Google Scholar 

  • Jochum K P, Stoll B, Weis U, Jacob D E, Mertz-Kraus R, Andreae M O. 2014. Non-matrix-matched calibration for the multi-element analysis of geological and environmental samples using 200 nm femtosecond LA-ICP-MS: A comparison with nanosecond lasers. Geostand Geoanal Res, 38: 265–292

    Article  Google Scholar 

  • Lin Y T, Hu S, Miao B K, Xu L, Liu Y, Xie L W, Feng L, Yang J. 2013. Grove Mountains 020090 enriched lherzolitic shergottite: A two-stage formation model. Meteorit Planet Sci, 48: 1572–1589

    Google Scholar 

  • Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 257: 34–43

    Article  Google Scholar 

  • Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J, Chen H H. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull, 55: 1535–1546

    Article  Google Scholar 

  • Ludwig K R. 2012. User’s Manual for Isoplot Version 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronological Center Special Publication. No.5

  • Luo T, Hu Z, Zhang W, Liu Y, Zong K, Zhou L, Zhang J, Hu S H. 2018. Water vapor-assisted “universal” nonmatrix-matched analytical method for the in situ U-Pb dating of zircon, monazite, titanite, and xenotime by laser ablation-inductively coupled plasma mass spectrometry. Anal Chem, 90: 9016–9024

    Article  Google Scholar 

  • Longerich H P, Jackson S E, Günther D. 1996. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom, 11: 899–904

    Article  Google Scholar 

  • Managh A J, Reid P. 2019. A new freeware tool for image processing and its application to high speed LA-ICP-MS imaging. J Anal At Spectrom, 34: 1369–1373

    Article  Google Scholar 

  • Martelat B, Isnard H, Vio L, Dupuis E, Cornet T, Nonell A, Chartier F. 2018. Precise U and Pu isotope ratio measurements in nuclear samples by hyphenating capillary electrophoresis and MC-ICPMS. Anal Chem, 90: 8622–8628

    Article  Google Scholar 

  • Ohata M, Tabersky D, Glaus R, Koch J, Hattendorf B, Günther D. 2014. Comparison of 795 nm and 265 nm femtosecond and 193 nm nanosecond laser ablation inductively coupled plasma mass spectrometry for the quantitative multi-element analysis of glass materials. J Anal At Spectrom, 29: 1345–1353

    Article  Google Scholar 

  • Paul B, Woodhead J D, Paton C, Hergt J M, Hellstrom J, Norris C A. 2014. Towards a method for quantitative LA-ICP-MS imaging of multi-phase assemblages: Mineral identification and analysis correction procedures. Geostand Geoanal Res, 38: 253–263

    Article  Google Scholar 

  • Pearce N J G, Perkins W T, Westgate J A, Wade S C. 2011. Trace-element microanalysis by LA-ICP-MS: The quest for comprehensive chemical characterisation of single, sub-10 µm volcanic glass shards. Quatern Int, 246: 57–81

    Article  Google Scholar 

  • Petrelli M, Caricchi L, Ulmer P. 2007. Application of high spatial resolution laser ablation ICP-MS to crystal-melt trace element partition coefficient determination. Geostand Geoanal Res, 31: 13–25

    Article  Google Scholar 

  • Petrelli M, Laeger K, Perugini D. 2016. High spatial resolution trace element determination of geological samples by laser ablation quadrupole plasma mass spectrometry: Implications for glass analysis in volcanic products. Geosci J, 20: 851–863

    Article  Google Scholar 

  • Pettke T, Oberli F, Audétat A, Guillong M, Simon A C, Hanley J J, Klemm L M. 2012. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geol Rev, 44: 10–38

    Article  Google Scholar 

  • Pettke T, Oberli F, Audétat A, Wiechert U, Harris C R, Heinrich C A. 2011. Quantification of transient signals in multiple collector inductively coupled plasma mass spectrometry: Accurate lead isotope ratio determination by laser ablation of individual fluid inclusions. J Anal At Spectrom, 26: 475–492

    Article  Google Scholar 

  • Reich M, Deditius A, Chryssoulis S, Li J W, Ma C Q, Parada M A, Barra F, Mittermayr F. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim Cosmochim Ac, 104: 42–62

    Article  Google Scholar 

  • Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol, 184: 123–138

    Article  Google Scholar 

  • Sanabria-Ortega G, Pécheyran C, Bérail S, Donard O F X. 2012. Fast and precise method for Pb isotope ratio determination in complex matrices using GC-MC-ICPMS: Application to crude oil, kerogen, and asphaltene samples. Anal Chem, 84: 7874–7880

    Article  Google Scholar 

  • Sforna M C, Lugli F. 2017. MapIT!: A simple and user-friendly MATLAB script to elaborate elemental distribution images from LA-ICP-MS data. J Anal At Spectrom, 32: 1035–1043

    Article  Google Scholar 

  • Sláma J, Košler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 249: 1–35

    Article  Google Scholar 

  • Sun W H, Zhou M-F, Gao J F, Yang Y H, Zhao X F, Zhao J H. 2009. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Res, 172: 99–126

    Article  Google Scholar 

  • Sundell K E, Gehrels G E, Pecha M E. 2021. Rapid U-Pb geochronology by laser ablation multi-collector ICP-MS. Geostand Geoanal Res, 45: 37–57

    Article  Google Scholar 

  • Thomas J B, Bodnar R J, Shimizu N, Sinha A K. 2002. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochim Cosmochim Ac, 66: 2887–2901

    Article  Google Scholar 

  • Ver Hoeve T J, Scoates J S, Wall C J, Weis D, Amini M. 2018. Evaluating downhole fractionation corrections in LA-ICP-MS U-Pb zircon geochronology. Chem Geol, 483: 201–217

    Article  Google Scholar 

  • Weber M, Lugli F, Jochum K P, Cipriani A, Scholz D. 2018. Calcium carbonate and phosphate reference materials for monitoring bulk and microanalytical determination of Sr isotopes. Geostand Geoanal Res, 42: 77–89

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A V, Roddick J C, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand News, 19: 1–23

    Article  Google Scholar 

  • Woodhead J D, Hellstrom J, Hergt J M, Greig A, Maas R. 2007. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand Geoanal Res, 31: 331–343

    Google Scholar 

  • Wu S T, Wörner G, Jochum K P, Stoll B, Simon K, Kronz A. 2019. The preparation and preliminary characterisation of three synthetic andesite reference glass materials (ARM-1, ARM-2, ARM-3) for in situ microanalysis. Geostand Geoanal Res, 43: 567–584

    Article  Google Scholar 

  • Wu S T, Yang M, Yang Y H, Xie L W, Huang C, Wang H, Yang J H. 2020. Improved in situ zircon U-Pb dating at high spatial resolution (5–16 µm) by laser ablation-single collector-sector field-ICP-MS using Jet sample and X skimmer cones. Int J Mass Spectrom, 456: 116394

    Article  Google Scholar 

  • Xia X P, Sun M, Zhao G-C, Li H M, Zhou M F. 2004. Spot zircon U-Pb isotope analysis by ICP-MS coupled with a frequency quintupled (213 nm) Nd-YAG laser system. Geochem J, 38: 191–200

    Article  Google Scholar 

  • Xia X P, Sun M, Geng H Y, Sun Y L, Wang Y J, Zhao G C. 2011. Quasi-simultaneous determination of U-Pb and Hf isotope compositions of zircon by excimer laser-ablation multiple-collector ICPMS. J Anal At Spectrom, 26: 1868–1871

    Article  Google Scholar 

  • Yang Y H, Wu F Y, Yang J H, Chew D M, Xie L W, Chu Z Y, Zhang Y B, Huang C. 2014. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chem Geol, 385: 35–55

    Article  Google Scholar 

  • Yang Y H, Wu F Y, Yang J H, Mitchell R H, Zhao Z F, Xie L W, Huang C, Ma Q, Yang M, Zhao H. 2018. U-Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom, 33: 231–239

    Article  Google Scholar 

  • Yuan H L, Gao S, Dai M N, Zong C L, Günther D, Fontaine G H, Liu X M, Diwu C R. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem Geol, 247: 100–118

    Article  Google Scholar 

  • Yuan H L, Liu X, Chen L, Bao Z A, Chen K Y, Zong C L, Li X C, Qiu W H. 2018. Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers. J Asian Earth Sci, 154: 386–396

    Article  Google Scholar 

  • Zhang W, Hu Z C. 2020. Estimation of isotopic reference values for pure materials and geological reference materials. At Spectrosc, 41: 93–102

    Article  Google Scholar 

  • Zhang W, Hu Z C, Liu Y S. 2020. Iso-Compass: New freeware software for isotopic data reduction of LA-MC-ICP-MS. J Anal At Spectrom, 35: 1087–1096

    Article  Google Scholar 

  • Zhang W, Hu Z C, Liu Y S, Wu T, Deng X D, Guo J L, Zhao H. 2018. Improved in situ Sr isotopic analysis by a 257 nm femtosecond laser in combination with the addition of nitrogen for geological minerals. Chem Geol, 479: 10–21

    Article  Google Scholar 

  • Zhang W, Wang Z C, Moynier F, Inglis E, Tian S Y, Li M, Liu Y S, Hu Z C. 2019. Determination of Zr isotopic ratios in zircons using laser-ablation multiple-collector inductively coupled-plasma mass-spectrometry. J Anal At Spectrom, 34: 1800–1809

    Article  Google Scholar 

  • Zhao H, Zhao X M, Le Roux P J, Zhang W, Wang H, Xie L W, Huang C, Wu S T, Yang J H, Wu F Y, Yang Y H. 2020. Natural clinopyroxene reference materials for in situ Sr isotopic analysis via LA-MC-ICP-MS. Front Chem, 8: 1131

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41973013, 41730211), the Natural Science Foundation of Hubei Province (Grant No. 2020CFA045) and the Most Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Grant Nos. MSFGPMR04, MSFGPMR08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Zhang, W., Hu, Z. et al. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the earth sciences. Sci. China Earth Sci. 65, 182–196 (2022). https://doi.org/10.1007/s11430-021-9827-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9827-2

Keywords

Navigation