Skip to main content
Log in

Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abtew W, Melesse A. 2013. Evaporation and Evapotranspiration: Measurements and Estimations. Dordrecht: Springer Science and Business Media. 206

    Book  Google Scholar 

  • Ahiman O, Mekhmandarov Y, Pirkner M, Tanny J. 2018. Application of the flux-variance technique for evapotranspiration estimates in three types of agricultural structures. Int J Agronomy, 2018: 7935140

    Article  Google Scholar 

  • Anderson M C, Norman J M, Diak G R, Kustas W P, Mecikalski R J. 1997. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens Environ, 60: 195–216

    Article  Google Scholar 

  • Arnfield A J. 2003. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol, 23: 1–26

    Article  Google Scholar 

  • Aubinet M, Vesala T, Papale D. 2012. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Dordrecht, Heidelberg, London, New York: Springer Science and Business Media. 438

    Book  Google Scholar 

  • Baldocchi D. 2013. A brief history on eddy covariance flux measurements: A personal perspective. FluxLetter, 5: 1–8

    Google Scholar 

  • Baldocchi D, Falge E, Gu L H, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X H, Malhi Y, Meyers T, Munger W, Oechel W, Paw K T, Pilegaard K, Schmid H P, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Amer Meteorol Soc, 82: 2415–2434

    Article  Google Scholar 

  • Bastiaanssen W G M, Menenti M, Feddes R A, Holtslag A A M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol, 212–213: 198–212

    Article  Google Scholar 

  • Beyer M, Kühnhammer K, Dubbert M. 2020. In situ measurements of soil and plant water isotopes: A review of approaches, practical considerations and a vision for the future. Hydrol Earth Syst Sci, 24: 4413–4440

    Article  Google Scholar 

  • Blanken P D, Spence C, Hedstrom N, Lenters J D. 2011. Evaporation from Lake Superior: 1. Physical controls and processes. J Great Lakes Res, 37: 707–716

    Article  Google Scholar 

  • Bouchet R J. 1963. Evapotranspiration réelle evapotranspiration potentielle, signification climatique. Int Assoc Sci Hydrol, 62: 134–142

    Google Scholar 

  • Bowen I S. 1926. The ratio of heat losses by conduction and by evaporation from any water surface. Phys Rev, 27: 779–787

    Article  Google Scholar 

  • Bruce J P, Clark R H. 1966. Introduction to Hydrometeorology. Oxford: Pergamon Press Ltd

    Google Scholar 

  • Brügger N, Milligan I. 2019. The SAGE Handbook of Web History. London: SAGE Publications Ltd. 630

    Book  Google Scholar 

  • Brutsaert W. 1982. Evaporation into the Atmosphere: Theory, History, and Applications. Dordrecht: Springer Science and Business Media. 299

    Book  Google Scholar 

  • Brutsaert W. 2005. Hydrology: An Introduction. Cambridge: Cambridge University Press. 605

    Book  Google Scholar 

  • Brutsaert W. 2015. A generalized complementary principle with physical constraints for land-surface evaporation. Water Resour Res, 51: 8087–8093

    Article  Google Scholar 

  • Budyko M I. 1948. Evaporation under Natural Conditions. Leningrad: Gidrometeorizdat, 1963

    Google Scholar 

  • Burgess S S O, Dawson T E. 2004. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): Foliar uptake and prevention of dehydration. Plant Cell Environ, 27: 1023–1034

    Article  Google Scholar 

  • Burman R, Pochop L O. 1994. Evaporation, Evapotranspiration and Climatic Data. Amsterdam: Elsevier Science. 278

    Google Scholar 

  • Caird M A, Richards J H, Donovan L A. 2007. Nighttime stomatal conductance and transpiration in C3 and C4 Plants. Plant Physiol, 143: 4–10

    Article  Google Scholar 

  • Cermak J, Nadezhdina N. 1998. Sapwood as the scaling parameter-defining according to xylem water content or radial pattern of sap flow? Ann For Sci, 55: 509–521

    Article  Google Scholar 

  • Chen J W, Deng Y, Wang J F, Lin W S. 2017. Hindcasting the madden-julian oscillation with a new parameterization of surface heat fluxes. J Adv Model Earth Syst, 9: 2696–2709

    Article  Google Scholar 

  • Cirelli D, Equiza M A, Lieffers V J, Tyree M T. 2016. Populus species from diverse habitats maintain high night-time conductance under drought. Tree Physiol, 36: 229–242

    Google Scholar 

  • Clausnitzer F, Köstner B, Schwärzel K, Bernhofer C. 2011. Relationships between canopy transpiration, atmospheric conditions and soil water availability—Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agric For Meteorol, 151: 1023–1034

    Article  Google Scholar 

  • Crago R D. 1996. Conservation and variability of the evaporative fraction during the daytime. J Hydrol, 180: 173–194

    Article  Google Scholar 

  • Craig H, Gordon L I. 1965. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi E, ed. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Spoleto: Cons. Naz. di Rech. 9–130

    Google Scholar 

  • Cristea N C, Kampf S K, Burges S J. 2013. Revised coefficients for Priestley-Taylor and Makkink-Hansen equations for estimating daily reference evapotranspiration. J Hydrol Eng, 18: 1289–1300

    Article  Google Scholar 

  • Cui Y F, Liu Y B, Gan G J, Wang R N. 2020. Hysteresis behavior of surface water fluxes in a hydrologic transition of an ephemeral lake. J Geophys Res-Atmos, 125: e32364

    Article  Google Scholar 

  • Cuxart J, Boone A A. 2020. Evapotranspiration over land from a boundary-layer meteorology perspective. Bound-Layer Meteorol, 177: 427–459

    Article  Google Scholar 

  • Daley M J, Phillips N G. 2006. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiol, 26: 411–419

    Article  Google Scholar 

  • Dalton J. 1802. Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat. Mem Manchester Lit Phil Soc, 5: 535–602

    Google Scholar 

  • de Bruin H A R. 1983. A model for the Priestley-Taylor parameter α. J Clim Appl Meteor, 22: 572–578

    Article  Google Scholar 

  • de la Hire P. 1720. Mémoires de mathematique et de physique., tirés des registres de l’Academie royale des sciences, de l’année MDCCIII. Remarques sur l’eau de la pluie, sur l’origine des fontaines; avec quelques particularités sur la construction des citernes. Hist de l’Acad Roy des Sci Ann, 1703: 56–59

    Google Scholar 

  • de Vries D A. 1959. The Influence of irrigation on the energy balance and the climate near the ground. J Meteor, 16: 256–270

    Article  Google Scholar 

  • Dyer A J. 1974. A review of flux-profile relationships. Bound-Layer Meteorol, 7: 363–372

    Article  Google Scholar 

  • Dye P J, Soko S, Poulter A G. 1996. Evaluation of the heat pulse velocity method for measuring sap flow in Pinus patula. J Exp Bot, 47: 975–981

    Article  Google Scholar 

  • Eller C B, Lima A L, Oliveira R S. 2013. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol, 199: 151–162

    Article  Google Scholar 

  • Engelmann C, Bernhofer C. 2016. Exploring eddy-covariance measurements using a spatial approach: The eddy matrix. Bound-Layer Meteorol, 161: 1–17

    Article  Google Scholar 

  • Fisher J B, Melton F, Middleton E, Hain C, Anderson M, Allen R, McCabe M F, Hook S, Baldocchi D, Townsend P A, Kilic A, Tu K, Miralles D D, Perret J, Lagouarde J P, Waliser D, Purdy A J, French A, Schimel D, Famiglietti J S, Stephens G, Wood E F. 2017. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour Res, 53: 2618–2626

    Article  Google Scholar 

  • Foken T. 2008. Micrometeorology. Berlin, Heidelberg: Springer-Verlag. 306

    Google Scholar 

  • Foken T, Aubinet M, Leuning R. 2012. The Eddy Covariance Method. In: Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Dordrecht, Heidelberg, London, New York: Springer Science and Business Media. 438

    Google Scholar 

  • Gan G J, Liu Y B, Sun G. 2021. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Sci Rev, 212: 103451

    Article  Google Scholar 

  • Gao Y X. 1989. The history of arid climate research in LIPAP (in Chinese). Plateau Meteorol, 8: 103–106

    Google Scholar 

  • Gianniou S K, Antonopoulos V Z. 2007. Evaporation and energy budget in Lake Vegoritis, Greece. J Hydrol, 345: 212–223

    Article  Google Scholar 

  • Glenn E P, Nagler P L, Huete A R. 2010. Vegetation index methods for estimating evapotranspiration by remote sensing. Surv Geophys, 31: 531–555

    Article  Google Scholar 

  • Grachev A A, Andreas E L, Fairall C W, Guest P S, Persson P O G. 2015. Similarity theory based on the Dougherty-Ozmidov length scale. Quart J R Meteorol Soc, 141: 1845–1856

    Article  Google Scholar 

  • Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol, 3: 309–320

    Article  Google Scholar 

  • Guo Y H, Zhang Y S, Ma N, Xu J Q, Zhang T. 2019. Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmos Res, 216: 141–150

    Article  Google Scholar 

  • Han S J, Tian F Q. 2020. A review of the complementary principle of evaporation: From the original linear relationship to generalized nonlinear functions. Hydrol Earth Syst Sci, 24: 2269–2285

    Article  Google Scholar 

  • Haughton N, Abramowitz G, Pitman A J, Or D, Best M J, Johnson H R, Balsamo G, Boone A, Cuntz M, Decharme B, Dirmeyer P A, Dong J, Ek M, Guo Z, Haverd V, van den Hurk B J J, Nearing G S, Pak B, Santanello Jr J A, Stevens L E, Vuichard N. 2016. The plumbing of land surface models: Is poor performance a result of methodology or data quality? J Hydrometeorol, 17: 1705–1723

    Article  Google Scholar 

  • Higbie R. 1935. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans AIChE, 31: 365–388

    Google Scholar 

  • Horst T W, Weil J C. 1994. How far is far enough? The fetch requirements for micrometeorological measurement of surface fluxes. J Atmos Ocean Technol, 11: 1018–1025

    Article  Google Scholar 

  • Howell T A, Schneider A D, Dusek D A, Marek T H, Steiner J L. 1995. Calibration and scale performance of Bushland weighing lysimeters. Trans ASAE, 38: 1019–1024

    Article  Google Scholar 

  • Hu Y G, Buttar N A, Tanny J, Snyder R L, Savage M J, Lakhiar I A. 2018. Surface renewal application for estimating evapotranspiration: A review. Adv Meteor, 2018: 1–11

    Article  Google Scholar 

  • Huber B. 1932. Observation and measurements of sap flow in plant. Ber Dtsch Bot Ges, 50: 89–109

    Google Scholar 

  • Itier B, Brunet Y, McAneney K J, Lagouarde J P. 1994. Downwind evolution of scalar fluxes and surface resistance under conditions of local advection. Part I: A reappraisal of boundary conditions. Agric For Meteorol, 71: 211–225

    Article  Google Scholar 

  • Jackson R D. 1985. Evaluating evapotranspiration at local and regional scales. Proc IEEE, 73: 1086–1096

    Article  Google Scholar 

  • Jacobs A F G, Heusinkveld B G, Wichink Kruit R J, Berkowicz S M. 2006. Contribution of dew to the water budget of a grassland area in the Netherlands. Water Resour Res, 42: W03415

    Article  Google Scholar 

  • Jiang L, Islam S. 1999. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys Res Lett, 26: 2773–2776

    Article  Google Scholar 

  • Keeling C D. 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta, 13: 322–334

    Article  Google Scholar 

  • Khalil M, Sakai M, Mizoguchi M, Miyazaki T. 2003. Current and prospective applications of zero flux plane (ZFP) method. J Jpn Soc Soil Phys, 95: 75–90

    Google Scholar 

  • Kidron G J, Starinsky A, Yaalon D H. 2014. Cyanobacteria are confined to dewless habitats within a dew desert: Implications for past and future climate change for lithic microorganisms. J Hydrol, 519: 3606–3614

    Article  Google Scholar 

  • Leclerc M, Foken T. 2014. Footprints in Micrometeorology and Ecology. Berlin, Heidelberg: Springer. 239

    Book  Google Scholar 

  • Lee X H. 2018. Fundamentals of Boundary-Layer Meteorology. Gewerbestrasse: Springer International Publishing. 256

    Book  Google Scholar 

  • Lemone M A, Angevine W M, Bretherton C S, Chen F, Dudhia J, Fedorovich E, Katsaros K B, Lenschow D H, Mahrt L, Patton E G, Sun J, Tjernström M, Weil J. 2018. 100 years of progress in boundary layer meteorology. Meteorol Monogr, 59: 1–85

    Google Scholar 

  • Lewis G N, Cornish R E. 1933. Separation of the isotopic forms of water by fractional distillation. J Am Chem Soc, 55: 2616–2617

    Article  Google Scholar 

  • Lewis J M. 1995. The story behind the Bowen ratio. Bull Amer Meteorol Soc, 76: 2433–2443

    Article  Google Scholar 

  • Li X Y, Ma Y J, Huang Y M, Hu X, Wu X C, Wang P, Li G Y, Zhang S Y, Wu H W, Jiang Z Y, Cui B L, Liu L. 2016. Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau. J Geophys Res-Atmos, 121: 10,470–10,485

    Article  Google Scholar 

  • Li Z L, Tang R, Wan Z M, Bi Y Y, Zhou C, Tang B H, Yan G J, Zhang X Y. 2009. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors, 9: 3801–3853

    Article  Google Scholar 

  • Liu S M, Li X, Xu Z W, Che T, Xiao Q, Ma M G, Liu Q H, Jin R, Guo J W, Wang L X, Wang W Z, Qi Y, Li H Y, Xu T R, Ran Y H, Hu X L, Shi S J, Zhu Z L, Tan J L, Zhang Y, Ren Z G. 2018. The Heihe integrated observatory network: A basin-scale land surface processes observatory in China. Vadose Zone J, 17: 180072

    Article  Google Scholar 

  • Liu S M, Xu Z W. 2019. Micrometeorological methods to determine evapotranspiration. In: Li X, Vereecken L, eds. Observation and Measurement of Ecohydrological Processes. Berlin, Heidelberg: SpringerVerlag Press

    Chapter  Google Scholar 

  • Liu S M, Xu Z W, Song L S, Zhao Q Y, Ge Y, Xu T R, Ma Y F, Zhu Z L, Jia Z Z. 2016. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric for Meteorol, 230–231: 97–113

    Article  Google Scholar 

  • Liu S M, Xu Z W, Wang W Z, Jia Z Z, Zhu M J, Bai J, Wang J M. 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol Earth Syst Sci, 15: 1291–1306

    Article  Google Scholar 

  • Liu Y B, Hiyama T. 2007. Detectability of day-to-day variability in the evaporative flux ratio: A field examination in the Loess Plateau of China. Water Resour Res, 43: W08503

    Article  Google Scholar 

  • Liu Y B, Hiyama T, Yamaguchi Y. 2006. Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens Environ, 105: 115–128

    Article  Google Scholar 

  • Liu Y B, Hiyama T, Yasunari T, Tanaka H. 2012. A nonparametric approach to estimating terrestrial evaporation: Validation in eddy covariance sites. Agric For Meteorol, 157: 49–59

    Article  Google Scholar 

  • Liu Y B, Wu G P, Ke C Q. 2016. Hydrologic Remote Sensing (in Chinese). Beijing: Science Press

    Google Scholar 

  • Ma N, Szilagyi J. 2019. The CR of evaporation: A calibration-free diagnostic and benchmarking tool for large-scale terrestrial evapotranspiration modeling. Water Resour Res, 55: 7246–7274

    Article  Google Scholar 

  • Mahrt L. 1999. Stratified atmospheric boundary layers. Bound-Layer Meteor, 90: 375–396

    Article  Google Scholar 

  • Mahrt L. 2007. Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ Fluid Mech, 7: 331–347

    Article  Google Scholar 

  • Mahrt L. 2010. Variability and maintenance of turbulence in the very stable boundary layer. Bound-Layer Meteorol, 135: 1–18

    Article  Google Scholar 

  • Manley G. 1958. On the frequency of snowfall in metropolitan England. Quart J R Met Soc, 84: 70–72

    Article  Google Scholar 

  • Marshall D C. 1958. Measurement of sap flow in conifers by heat transport. Plant Physiol, 33: 385–396

    Article  Google Scholar 

  • McNaughton K G. 1976. Evaporation and advection I: Evaporation from extensive homogeneous surfaces. Quart J R Met Soc, 102: 181–191

    Article  Google Scholar 

  • Moene A F, Beyrich F, Hartogensis O K. 2009. Developments in scintillometry. Bull Amer Meteorol Soc, 90: 694–698

    Article  Google Scholar 

  • Monin A, Obukhov A. 1954. Basic turbulence mixing laws in the atmospheric surface layer. Trudy Geologicheskogo Instituta Akademiya Nauk, Svaz Sovetskych Socialistickych Republik, 24: 163–187

    Google Scholar 

  • Monteith J L. 1965. Evaporation and environment. Symp Soc Exp Biol, 19: 205–234

    Google Scholar 

  • Montgomery R B. 1948. Vertical eddy flux of heat in the atmosphere. J Meteor, 5: 265–274

    Article  Google Scholar 

  • Moore G W, Cleverly J R, Owens M K. 2008. Nocturnal transpiration in riparian Tamarix thickets authenticated by sap flux, eddy covariance and leaf gas exchange measurements. Tree Physiol, 28: 521–528

    Article  Google Scholar 

  • Norman J M, Kustas W P, Humes K S. 1995. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric For Meteorol, 77: 263–293

    Article  Google Scholar 

  • Nouri H, Nagler P, Chavoshi Borujeni S, Barreto Munez A, Alaghmand S, Noori B, Galindo A, Didan K. 2020. Effect of spatial resolution of satellite images on estimating the greenness and evapotranspiration of urban green spaces. Hydrological Processes, 34: 3183–3199

    Article  Google Scholar 

  • Novñk V. 2012. Evapotranspiration in the Soil-Plant-Atmosphere System. Dordrecht: Springer

    Google Scholar 

  • Ogle K, Lucas R W, Bentley L P, Cable J M, Barron-Gafford G A, Griffith A, Ignace D, Jenerette G D, Tyler A, Huxman T E, Loik M E, Smith S D, Tissue D T. 2012. Differential daytime and night-time stomatal behavior in plants from North American deserts. New Phytol, 194: 464–476

    Article  Google Scholar 

  • Oki T, Kanae S. 2006. Global hydrological cycles and world water resources. Science, 313: 1068–1072

    Article  Google Scholar 

  • Pan X, Liu Y B, Gan G J, Fan X W, Yang Y B. 2017. Estimation of evapotranspiration using a nonparametric approach under all sky: Accuracy evaluation and error analysis. IEEE J Sel Top Appl Earth Observat Remote Sens, 10: 2528–2539

    Article  Google Scholar 

  • Pan X, You C S, Liu Y B, Shi C X, Han S, Yang Y B, Hu J. 2020. Evaluation of satellite-retrieved evapotranspiration based on a non-parametric approach over an arid region. Int J Remote Sens, 41: 7605–7623

    Article  Google Scholar 

  • Paw U K T, Brunet Y, Collineau S, Shaw R H, Maitani T, Qiu J, Hipps L. 1992. On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol, 61: 55–68

    Article  Google Scholar 

  • Peixoto J P. 1995. The role of the atmosphere in the water cycle. In: The Role of Water and the Hydrological Cycle in Global Change. Berlin, Heidelberg: Springer, 199–252

    Google Scholar 

  • Penman H L. 1948. Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A, 193: 120–145

    Article  Google Scholar 

  • Philip J R. 1959. The theory of local advection: I. J Meteor, 16: 535–547

    Article  Google Scholar 

  • Phillips D L, Gregg J W. 2001. Uncertainty in source partitioning using stable isotopes. Oecologia, 127: 171–179

    Article  Google Scholar 

  • Piao S, Zhang X, Chen A, Liu Q, Lian X, Wang X, Peng S, Wu X. 2019. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci China Earth Sci, 62: 1551–1563

    Article  Google Scholar 

  • Pitman A J. 2003. The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol, 23: 479–510

    Article  Google Scholar 

  • Prandtl L. 1905. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhaglungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg 1904. Krazer A, ed. Leipzig: Teubner. 484–491

  • Price J C. 1980. The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resour Res, 16: 787–795

    Article  Google Scholar 

  • Priestley C H B, Taylor R J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev, 100: 81–92

    Article  Google Scholar 

  • Qiu G Y. 1996. A new method for estimation of evapotranspiration. Dissertation for Doctoral Degree. Tottori: Tottori University, United Graduate School of Agriculture Science

    Google Scholar 

  • Qiu G Y, Tan S L, Wang Y, Yu X H, Yan C H. 2017. Characteristics of evapotranspiration of urban lawns in a sub-tropical megacity and its measurement by the “Three Temperature Model + Infrared Remote Sensing” method. Remote Sens, 9: 502

    Article  Google Scholar 

  • Qiu G Y, Yano T, Momii K. 1998. An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface. J Hydrol, 210: 93–105

    Article  Google Scholar 

  • Qiu G Y, Yu X H, Wen H Y, Yan C H. 2020. An advanced approach for measuring the transpiration rate of individual urban trees by the 3D three-temperature model and thermal infrared remote sensing. J Hydrol, 587: 125034

    Article  Google Scholar 

  • Rao B Q, Liu Y D, Wang W B, Hu C X, Li D H, Lan S B. 2009. Influence of dew on biomass and photosystem II activity of cyanobacterial crusts in the Hopq Desert, northwest China. Soil Biol Biochem, 41: 2387–2393

    Article  Google Scholar 

  • Ren Y, Zhang H S, Wei W, Wu B G, Cai X H, Song Y. 2019. Effects of turbulence structure and urbanization on the heavy haze pollution process. Atmos Chem Phys, 19: 1041–1057

    Article  Google Scholar 

  • Reynolds O. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil Trans R Soc Lond A 186: 123–161

    Article  Google Scholar 

  • Richards L A. 1954. Multiple tensiometer for determining the vertical component of the hydraulic gradient in soil1. Soil Sci Soc Am J, 18: 7–10

    Article  Google Scholar 

  • Roderick M L, Farquhar G D. 2002. The cause of decreased pan evaporation over the past 50 years. Science, 298: 1410–1411

    Article  Google Scholar 

  • Chabot R, Bouarfa S, Zimmer D, Chaumont C, Moreau S. 2005. Evaluation of the sap flow determined with a heat balance method to measure the transpiration of a sugarcane canopy. Agric Water Manage, 75: 10–24

    Article  Google Scholar 

  • Rossby C G. 1932. A generalization of the theory of the mixing length with applications to oceanic and atmospheric turbulence. Mass Inst Tech Meteorl Pap, 1: 1–36

    Google Scholar 

  • Schmidt W. 1915. Strahlung und Verdunstung an freien Wasserfliichen: ein Beitrag zum Wiirmehaushalt des Weltmeers und zum Wasserhaushalt der Erde. Ann d Hydrogr u Mar Met, 43: 111–124

    Google Scholar 

  • Schmugge T J, André J C. 1991. Land Surface Evaporation. New York: Springer. 424

    Book  Google Scholar 

  • Sellers P J, Hall F G, Kelly R D, Black A, Baldocchi D, Berry J, Ryan M, Jon Ranson K, Crill P M, Lettenmaier D P, Margolis H, Cihlar J, Newcomer J, Fitzjarrald D, Jarvis P G, Gower S T, Halliwell D, Williams D, Goodison B, Wickland D E, Guertin F E. 1997. BOREAS in 1997: Experiment overview, scientific results, and future directions. J Geophys Res, 102: 28731–28769

    Article  Google Scholar 

  • Shuttleworth W J. 2007. Putting the “vap” into evaporation. Hydrol Earth Syst Sci, 11: 210–244

    Article  Google Scholar 

  • Shuttleworth W J. 2012. Terrestrial Hydrometeorology West Sussex. John Wiley & Sons, Ltd.

  • Shuttleworth W J, Wallace J S. 1985. Evaporation from sparse crops-an energy combination theory. Quart J R Meteorol Soc, 111: 839–855

    Article  Google Scholar 

  • Spronken-Smith R A, Oke T R, Lowry W P. 2000. Advection and the surface energy balance across an irrigated urban park. Int J Climatol, 20: 1033–1047

    Article  Google Scholar 

  • Stammers W N, Igwe O C, Whiteley H R. 1973. Calculation of evaporation from measurements of soil water and the soil water characteristics. Can Agr Eng, 15: 2–5

    Google Scholar 

  • Su T, Feng G L. 2015. Spatial-temporal variation characteristics of global evaporation revealed by eight reanalyses. Sci China Earth Sci, 58: 255–269

    Article  Google Scholar 

  • Su Z. 2002. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci, 6: 85–100

    Article  Google Scholar 

  • Sun J, Lenschow D H, Burns S P, Banta R M, Newsom R K, Coulter R, Frasier S, Ince T, Nappo C, Balsley B B, Jensen M, Mahrt L, Miller D, Skelly B. 2004. Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound-Layer Meteor, 110: 255–279

    Article  Google Scholar 

  • Sun L, Wu G X. 2001. Influence of Land evapotranspiration on climate variations. Sci China Ser D-Earth Sci, 44: 838–846

    Article  Google Scholar 

  • Swanson R H, Whitfield D W A. 1981. A numerical analysis of heat pulse velocity theory and practice. J Exp Bot, 32: 221–239

    Article  Google Scholar 

  • Swinbank W C. 1951. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J Meteor, 8: 135–145

    Article  Google Scholar 

  • Taha H, Akbari H, Rosenfeld A. 1991. Heat island and oasis effects of vegetative canopies: Micro-meteorological field-measurements. Theor Appl Climatol, 44: 123–138

    Article  Google Scholar 

  • Tanner C B. 1960. Energy balance approach to evapotranspiration from crops. Soil Sci Soc Am J, 24: 1–9

    Article  Google Scholar 

  • Tatarskii V I. 1961. Wave Propagation in a Turbulent Medium. New York: McGraw-Hill. 285

    Google Scholar 

  • Taylor G I. 1938. The spectrum of turbulence. Proc R Soc Lond A, 164: 476–490

    Article  Google Scholar 

  • Thornthwaite C W, Holzman B. 1942. Measurement of evaporation from land and water surfaces. Technical Bulletin. Washington: United States Department of Agriculture

    Google Scholar 

  • Tillman J E. 1972. The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J Appl Meteorol, 11: 783–792

    Article  Google Scholar 

  • Todd R W, Evett S R, Howell T A. 2000. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment. Agric For Meteorol, 103: 335–348

    Article  Google Scholar 

  • Uclés O, Villagarcía L, Moro M J, Canton Y, Domingo F. 2014. Role of dewfall in the water balance of a semiarid coastal steppe ecosystem. Hydrol Process, 28: 2271–2280

    Article  Google Scholar 

  • von Kármán T. 1930. Mechanische Ähnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der Wissenschaften ZU Göttingen. Mathematisch-Physikalische Klasse. 58–76

  • Walker C D, Richardson S B. 1991. The use of stable isotopes of water in characterising the source of water in vegetation. Chem Geol, 94: 145–158

    Article  Google Scholar 

  • Wang J F, Bras R L. 2011. A model of evapotranspiration based on the theory of maximum entropy production. Water Resour Res, 47: W03521

    Article  Google Scholar 

  • Wang J F, Bras R L, Lerdau M, Salvucci G D. 2007. A maximum hypothesis of transpiration. J Geophys Res, 112: G03010

    Google Scholar 

  • Wang J F, Liu Y B, Zhang K. 2019. The maximum entropy production approach for estimating evapotranspiration: Principle and applications (in Chinese). Adv in Earth Sci, 34: 596–605

    Google Scholar 

  • Wang J F, Salvucci G D, Bras R L. 2004. An extremum principle of evaporation. Water Resour Res, 40: W09303

    Article  Google Scholar 

  • Wang N, Jia L, Li Z S, Li N N, Hu G C. 2016. Applicability analysis of nonparametric evapotranspiration approach over Heihe River basin (in Chinese). Plateau Meteorol, 35: 118–128

    Google Scholar 

  • Wang K, Dickinson R E. 2012. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev Geophys, 50: RG2005

    Article  Google Scholar 

  • Wang W, Xiao W, Cao C, Gao Z Q, Hu Z H, Liu S D, Shen S H, Wang L L, Xiao Q T, Xu J P, Yang D, Lee X H. 2014. Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. J Hydrol, 511: 811–824

    Article  Google Scholar 

  • Ward R C, Robinson M. 2000. Principles of Hydrology. 4th ed. London: McGraw-Hill

    Google Scholar 

  • Wei W, Zhang H S, Wu B G, Huang Y X, Cai X H, Song Y, Li J D. 2018. Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: Cases from Tianjin. Atmos Chem Phys, 18: 12953–12967

    Article  Google Scholar 

  • Wesely M L. 1976. The combined effect of temperature and humidity fluctuations on refractive index. J Appl Meteorol, 15: 43–49

    Article  Google Scholar 

  • Willis W O. 1960. Evaporation from layered soils in the presence of a water table. Soil Sci Soc Am J, 24: 239–242

    Article  Google Scholar 

  • World Meteorological Organization (WMO). 1996. Guide to Meteorological Instruments and Methods of Observation. WMO-No. 8. 6th ed. Geneva: World Meteorological Organization

    Google Scholar 

  • Wu J G, Jelinski D E, Luck M, Tueller P T. 2000. Multiscale analysis of landscape heterogeneity: Scale variance and pattern metrics. Geogr Inf Sci, 6: 6–19

    Google Scholar 

  • Xiong Y J, Zhao W L, Wang P, Paw U K T, Qiu G Y. 2019. Simple and applicable method for estimating evapotranspiration and its components in arid regions. J Geophys Res-Atmos, 124: 9963–9982

    Article  Google Scholar 

  • Yakir D, Sternberg L S L. 2000. The use of stable isotopes to study ecosystem gas exchange. Oecologia, 123: 297–311

    Article  Google Scholar 

  • Yakir D, Wang X F. 1996. Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature, 380: 515–517

    Article  Google Scholar 

  • Yan C H, Qiu G Y. 2016. The three-temperature model to estimate evapotranspiration and its partitioning at multiple scales: A review. Trans ASABE, 59: 661–670

    Article  Google Scholar 

  • Yu G R, Zhang L M, Sun X M. 2014. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (China-FLUX) (in Chinese). Prog Geogr, 33: 903–917

    Google Scholar 

  • Yu M H, Ding G D, Gao G L, Zhao Y Y, Sai K. 2019. Hysteresis resulting in forestry heat storage underestimation: A case study of plantation forestry in northern China. Sci Total Environ, 671: 608–616

    Article  Google Scholar 

  • Zeppel M J B, Lewis J D, Phillips N G, Tissue D T. 2014. Consequences of nocturnal water loss: A synthesis of regulating factors and implications for capacitance, embolism and use in models. Tree Physiol, 34: 1047–1055

    Article  Google Scholar 

  • Zeweldi D A, Gebremichael M, Wang J M, Sammis T, Kleissl J, Miller D. 2010. Intercomparison of sensible heat flux from large aperture scintillometer and eddy covariance methods: Field experiment over a homogeneous semi-arid region. Bound-Layer Meteorol, 135: 151–159

    Article  Google Scholar 

  • Zhang K, Kimball J S, Nemani R R, Running S W. 2010. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour Res, 46: W09522

    Article  Google Scholar 

  • Zhang L, Dawes W R, Walker G R. 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res, 37: 701–708

    Article  Google Scholar 

  • Zhang Y, Jia Z Z, Liu S M, Xu Z W, Xu T R, Yao Y J, Ma Y F, Song L S, Li X, Hu X, Wang Z Y, Guo Z X, Zhou J. 2020. Advances in validation of remotely sensed land surface evapotranspiration (in Chinese). J Remote Sens, 24: 975–999

    Google Scholar 

  • Zhao W L, Gentine P, Reichstein M, Zhang Y, Zhou S, Wen Y Q, Lin C J, Li X, Qiu G Y. 2019. Physics-constrained machine learning of evapotranspiration. Geophys Res Lett, 46: 14496–14507

    Article  Google Scholar 

  • Zhao X S, Liu Y B. 2017. Phase transition of surface energy exchange in China’s largest freshwater lake. Agric For Meteorol, 244–245: 98–110

    Article  Google Scholar 

  • Zhao X S, Liu Y B. 2018. Variability of surface heat fluxes and its driving forces at different time scales over a large ephemeral lake in China. J Geophys Res-Atmos, 123: 4939–4957

    Article  Google Scholar 

  • Zhao X S, Liu Y B, Tanaka H, Hiyama T. 2010. A comparison of flux variance and surface renewal methods with eddy covariance. IEEE J Sel Top Appl Earth Observat Remote Sens, 3: 345–350

    Article  Google Scholar 

  • Zhuang Y L, Zhao W Z. 2017. Dew formation and its variation in Haloxylon ammodendron plantations at the edge of a desert oasis, north-western China. Agric For Meteorol, 247: 541–550

    Article  Google Scholar 

  • Zou Z D, Yang Y J, Qiu G Y. 2019. Quantifying the evapotranspiration rate and its cooling effects of urban hedges based on three-temperature model and infrared remote sensing. Remote Sens, 11: 202

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank the three anonymous reviewers for their constructive comments on the early version of the manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 51879255, 41430855).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanbo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Qiu, G., Zhang, H. et al. Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives. Sci. China Earth Sci. 65, 197–214 (2022). https://doi.org/10.1007/s11430-020-9834-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9834-y

Keywords

Navigation