Skip to main content
Log in

A multiple-proxy stalagmite record reveals historical deforestation in central Shandong, northern China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Evaluating anthropogenic impacts on regional vegetation changes during historical time is not only important for a better understanding of the Anthropocene but also valuable in improving the vegetation-climate models. In this study, we analyzed stable isotopes (δ18O, δ13C) and trace elements (Mg/Ca, Sr/Ca) of a stalagmite from Huangchao Cave in central Shandong, northern China. 230Th and AMS14C dating results indicate the stalagmite deposited during 174BC and AD1810, with a hiatus between AD638 and 1102. Broad similarities of the δ18O and trace elements in the stalagmite suggest they are reliable precipitation indexes. The δ13C of the stalagmite, a proxy of vegetation change, was generally consistent with local precipitation and temperature variations on a centennial-scale before the 15th century. It typically varied from −9.6‰ to −6.3‰, indicating climate controlled C3 type vegetation during this period. However, a persistent and marked increasing trend in the δ13C record was observed since the 15th century, resulting in δ13C values from −7.7‰ to −1.6‰ in the next four centuries. This unprecedented δ13C change caused by vegetation deterioration cannot be explained by climate change but is fairly consistent with the dramatically increasing population and farmland in Shandong. We suggest that the increasing deforestation and reclamation in central Shandong began to affect vegetation in the mountain region of central Shandong since the 15th century and severely destroyed or even cleared the forest during the 16th–18th century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arienzo M M, Mehterian S, Swart P K, Broad K, Kakuk B. 2019. Dripwater and calcite geochemistry variations in a monitored Bahamas cave. Geochem Geophys Geosyst, 20: 4306–4318

    Google Scholar 

  • Baker A, Ito E, Smart P L, McEwan R F. 1997. Elevated and variable values of 13C in speleothems in a British cave system. Chem Geol, 136: 263–270

    Google Scholar 

  • Baldini J U L, McDermott F, Baker A, Baldini L M, Mattey D P, Railsback L B. 2005. Biomass effects on stalagmite growth and isotope ratios: A 20th century analogue from Wiltshire, England. Earth Planet Sci Lett, 240: 486–494

    Google Scholar 

  • Boers N, Marwan N, Barbosa H M J, Kurths J. 2017. A deforestation-induced tipping point for the South American monsoon system. Sci Rep, 7: 41489

    Google Scholar 

  • Breitenbach S F M, Rehfeld K, Goswami B, Baldini J U L, Ridley H E, Kennett D J, Prufer K M, Aquino V V, Asmerom Y, Polyak V J, Cheng H, Kurths J, Marwan N. 2012. Constructing proxy records from age models (COPRA). Clim Past, 8: 1765–1779

    Google Scholar 

  • Breitenbach S F M, Plessen B, Waltgenbach S, Tjallingii R, Leonhardt J, Jochum K P, Meyer H, Goswami B, Marwan N, Scholz D. 2019. Holocene interaction of maritime and continental climate in Central Europe: New speleothem evidence from Central Germany. Glob Planet Change, 176: 144–161

    Google Scholar 

  • Cai Y J, Fung I Y, Edwards R L, An Z S, Cheng H, Lee J E, Tan L C, Shen C C, Wang X F, Day J A, Zhou W J, Kelly M J, Chiang J C H. 2015. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc Natl Acad Sci USA, 112: 2954–2959

    Google Scholar 

  • Cai Y J, Tan L C, Cheng H, An Z S, Edwards R L, Kelly M J, Kong X G, Wang X F. 2010. The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett, 291: 21–31

    Google Scholar 

  • Carolin S A, Walker R T, Day C C, Ersek V, Sloan R A, Dee M W, Talebian M, Henderson G M. 2019. Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change. Proc Natl Acad Sci USA, 116: 67–72

    Google Scholar 

  • Cerling T E, Quade J, Wang Y, Bowman J R. 1989. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature, 341: 138–139

    Google Scholar 

  • Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X, Wang Y, Zhang R, Wang X. 2009. Ice age terminations. Science, 326: 248–252

    Google Scholar 

  • Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X, Kong X, Wang Y, Ning Y, Zhang H. 2016. The Asian monsoon over the past 640000 years and ice age terminations. Nature, 534: 640–646

    Google Scholar 

  • Cheng H, Lawrence Edwards R, Shen C C, Polyak V J, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C, Wang X, Calvin Alexander Jr E. 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet Sci Lett, 371-372: 82–91

    Google Scholar 

  • Cheng H, Zhang H, Zhao J, Li H, Ning Y, Kathayat G. 2019. Chinese stalagmite paleoclimate researches: A review and perspective. Sci China Earth Sci, 62: 1489–1513

    Google Scholar 

  • Coe M T, Costa M H, Soares-Filho B S. 2009. The influence of historical and potential future deforestation on the stream flow of the Amazon River—Land surface processes and atmospheric feedbacks. J Hydrol, 369: 165–174

    Google Scholar 

  • Columbu A, Spötl C, De Waele J, Yu T L, Shen C C, Gázquez F. 2019. A long record of MIS 7 and MIS 5 climate and environment from a western Mediterranean speleothem (SW Sardinia, Italy). Quat Sci Rev, 220: 230–243

    Google Scholar 

  • Craig H, Keeling C D. 1963. The effects of atmospheric NO2 on the measured isotopic composition of atmospheric CO2. Geochim Cosmochim Acta, 27: 549–551

    Google Scholar 

  • Crutzen P J, Stoermer E F. 2000. The Anthropocene. IGBP Newsletter, 41: 17–18

    Google Scholar 

  • Davin E L, de Noblet-Ducoudré N. 2010. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J Clim, 23: 97–112

    Google Scholar 

  • Denniston R F, González L A, Asmerom Y, Reagan M K, Recelli-Snyder H. 2000. Speleothem carbon isotopic records of Holocene environments in the Ozark Highlands, USA. Quat Int, 67: 21–27

    Google Scholar 

  • Dong G H, Li R, Lu M X, Zhang D J, James N. 2020. Evolution of human-environmental interactions in China from the Late Paleolithic to the Bronze Age. Prog Phys Geogr-Earth Environ, 44: 233–250

    Google Scholar 

  • Dorale J A, Edwards R L, Ito E, Gonzalez L A. 1998. Climate and Vegetation History of the Midcontinent from 75 to 25 ka: A Speleothem Record from Crevice Cave, Missouri, USA. Science, 282: 1871–1874

    Google Scholar 

  • Durieux L, Machado L A T, Laurent H. 2003. The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sens Environ, 86: 132–140

    Google Scholar 

  • Editorial Committee of Qingzhou Shizhi (ECQS). 1989. History of Qingzhou (in Chinese). Tianjin: Nankai University Press

    Google Scholar 

  • Edwards R L, Chen J H, Wasserburg G J. 1987. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500000 years. Earth Planet Sci Lett, 81: 175–192

    Google Scholar 

  • Fairchild I J, Borsato A, Tooth A F, Frisia S, Hawkesworth C J, Huang Y, McDermott F, Spiro B. 2000. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chem Geol, 166: 255–269

    Google Scholar 

  • Fairchild I J, Treble P C. 2009. Trace elements in speleothems as recorders of environmental change. Quat Sci Rev, 28: 449–468

    Google Scholar 

  • Francey R J, Allison C E, Etheridge D M, Trudinger C M, Enting I G, Leuenberger M, Langenfelds R L, Michel E, Steele L P. 1999. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B-Chem Phys Meteorol, 51: 170–193

    Google Scholar 

  • Ge Q S, Hao Z X, Zheng J Y, Shao X M. 2013. Temperature changes over the past 2000 yr in China and comparison with the Northern Hemisphere. Clim Past, 9: 1153–1160

    Google Scholar 

  • Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S. 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature, 421: 833–837

    Google Scholar 

  • Goede A, McCulloch M, McDermott F, Hawkesworth C. 1998. Aeolian contribution to strontium and strontium isotope variations in a Tasmanian speleothem. Chem Geol, 149: 37–50

    Google Scholar 

  • Griffiths M L, Kimbrough A K, Gagan M K, Drysdale R N, Cole J E, Johnson K R, Zhao J X, Cook B I, Hellstrom J C, Hantoro W S. 2016. Western Pacific hydroclimate linked to global climate variability over the past two millennia. Nat Commun, 7: 11719

    Google Scholar 

  • Hu C Y, Henderson G M, Huang J H, Xie S C, Sun Y, Johnson K R. 2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet Sci Lett, 266: 221–232

    Google Scholar 

  • Jaffey A H, Flynn K F, Glendenin L E, Bentley W C, Essling A M. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C, 4: 1889–1906

    Google Scholar 

  • Jiang X Y, Wang X Y, He Y Q, Hu H M, Li Z Z, Spötl C, Shen C C. 2016. Precisely dated multidecadally resolved Asian summer monsoon dynamics 113.5–86.6 thousand years ago. Quat Sci Rev, 143: 1–12

    Google Scholar 

  • Jull A. 2007. Radiocarbon dating AMS method. Encycl Quat Sci, 2911–2918

    Google Scholar 

  • Kaplan J O, Krumhardt K M, Zimmermann N. 2009. The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev, 28: 3016–3034

    Google Scholar 

  • Kennett D J, Breitenbach S F M, Aquino V V, Asmerom Y, Awe J, Baldini J U L, Bartlein P, Culleton B J, Ebert C, Jazwa C, Macri M J, Marwan N, Polyak V, Prufer K M, Ridley H E, Sodemann H, Winterhalder B, Haug G H. 2012. Development and disintegration of Maya political systems in response to climate change. Science, 338: 788–791

    Google Scholar 

  • Klimek K, Lanczont M, Nogaj-Chachaj J. 2006. Historical deforestation as a cause of alluviation in small valleys, subcarpathian loess plateau, Poland. Reg Environ Change, 6: 52–61

    Google Scholar 

  • Kuo T S, Liu Z Q, Li H C, Wan N J, Shen C C, Ku T L. 2011. Climate and environmental changes during the past millennium in central western Guizhou, China as recorded by Stalagmite ZJD-21. J Asian Earth Sci, 40: 1111–1120

    Google Scholar 

  • Lean J, Warrilow D A. 1989. Simulation of the regional climatic impact of Amazon deforestation. Nature, 342: 411–413

    Google Scholar 

  • Lee X, Goulden M L, Hollinger D Y, Barr A, Black T A, Bohrer G, Bracho R, Drake B, Goldstein A, Gu L, Katul G, Kolb T, Law B E, Margolis H, Meyers T, Monson R, Munger W, Oren R, Paw U K T, Richardson A D, Schmid H P, Staebler R, Wofsy S, Zhao L. 2011. Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479: 384–387

    Google Scholar 

  • Lejeune Q, Davin E L, Gudmundsson L, Winckler J, Seneviratne S I. 2018. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nat Clim Change, 8: 386–390

    Google Scholar 

  • Lewis S L, Maslin M A. 2015. Defining the Anthropocene. Nature, 519: 171–180

    Google Scholar 

  • Li D, Tan L, Cai Y, Jiang X, Ma L, Cheng H, Edwards R L, Zhang H, Gao Y, An Z. 2019a. Is Chinese stalagmite δ18O solely controlled by the Indian summer monsoon? Clim Dyn, 53: 2969–2983

    Google Scholar 

  • Li D, Tan L, Guo F, Cai Y, Sun Y, Xue G, Cheng X, Yan H, Cheng H, Edwards R L, Gao Y, Kelley J. 2019b. Application of Avaatech X-ray fluorescence core-scanning in Sr/Ca analysis of speleothems. Sci China Earth Sci, 62: 964–973

    Google Scholar 

  • Li H C, Ku T L, Stott L D, Yuan D X, Chen W J, Li T Y. 1997. Interannual-resolution δ13C record of stalagmites as proxy for the changes in precipitation and atmospheric CO2 in Shihua Cave, Beijing (in Chinese with English abstract). Carsol Sin, 16: 285–295

    Google Scholar 

  • Li H C, Ku T L, You C F, Cheng H, Edwards R L, Ma Z B, Tsai W, Li M D. 2005. 87Sr/86Sr and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago. Geochim Cosmochim Acta, 69: 3933–3947

    Google Scholar 

  • Li J H. 1987. Historical dynamics of the forest in Shandong (in Chinese). Agric Archaeol, (1): 219–225

  • Li T Y, Yuan D X, Li H C, Yang Y, Wang J L, Wang X Y, Li J Y, Qin J M, Zhang M L, Lin Y S. 2007. High-resolution climate variability of southwest China during 57–70 ka reflected in a stalagmite δ18O record from Xinya Cave. Sci China Ser D-Earth Sci, 50: 1202–1208

    Google Scholar 

  • Li X L, Cheng H, Tan L C, Ban F M, Sinha A, Duan W H, Li H Y, Zhang H W, Ning Y F, Kathayat G. 2017. The East Asian summer monsoon variability over the last 145 years inferred from the Shihua Cave record, North China. Sci Rep, 7: 7078

    Google Scholar 

  • Li Y, Zhao M S, Mildrexler D J, Motesharrei S, Mu Q, Kalnay E, Zhao F, Li S C, Wang K C. 2016. Potential and actual impacts of deforestation and afforestation on land surface temperature. J Geophys Res-Atmos, 121: 14372

    Google Scholar 

  • Liang F Z. 2018. Households, Farmland and Land Tax During Chinese Historical Time (in Chinese). Beijing: China Publishing House

    Google Scholar 

  • Liu D B, Wang Y J, Cheng H, Edwards R L, Kong X G. 2015. Cyclic changes of Asian monsoon intensity during the early mid-Holocene from annually-laminated stalagmites, central China. Quat Sci Rev, 121: 1–10

    Google Scholar 

  • Liu J B, Chen J H, Zhang X J, Li Y, Rao Z G, Chen F H. 2015. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records. Earth-Sci Rev, 148: 194–208

    Google Scholar 

  • Liu Z Y, Wen X Y, Brady E C, Otto-Bliesner B, Yu G, Lu H Y, Cheng H, Wang Y J, Zheng W P, Ding Y H. 2014. Chinese cave records and the East Asia summer monsoon. Quat Sci Rev, 83: 115–128

    Google Scholar 

  • Lu Y, Teng Z Z. 2000. General History of Chinese Population (in Chinese). Jinan: Shandong People’s Publishing

    Google Scholar 

  • Luo W J, Wang S J, Xie X N, Zhou Y C, Li T Y. 2013. Stable carbon isotope variations in cave percolation waters and their implications in four caves of Guizhou, China. Acta Geol Sin-Engl Ed, 87: 1396–1411

    Google Scholar 

  • Maher B A, Thompson R. 2012. Oxygen isotopes from Chinese caves: Records not of monsoon rainfall but of circulation regime. J Quat Sci, 27: 615–624

    Google Scholar 

  • McDermott F. 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat Sci Rev, 23: 901–918

    Google Scholar 

  • Nogherotto R, Coppola E, Giorgi F, Mariotti L. 2013. Impact of Congo Basin deforestation on the African monsoon. Atmos Sci Lett, 14: 45–51

    Google Scholar 

  • Oster J L, Montañez I P, Kelley N P. 2012. Response of a modern cave system to large seasonal precipitation variability. Geochim Cosmochim Acta, 91: 92–108

    Google Scholar 

  • Pérez-Mejías C, Moreno A, Sancho C, Martín-García R, Spötl C, Cacho I, Cheng H, Edwards R L. 2019. Orbital-to-millennial scale climate variability during Marine Isotope Stages 5 to 3 in northeast Iberia. Quat Sci Rev, 224: 105946

    Google Scholar 

  • Potter G L, Ellsaesser H W, MacCracken M C, Luther F M. 1975. Possible climatic impact of tropical deforestation. Nature, 258: 697–698

    Google Scholar 

  • Sen O L, Wang Y, Wang B. 2004. Impact of Indochina deforestation on the East Asian Summer Monsoon. J Clim, 17: 1366–1380

    Google Scholar 

  • Shen K. 2009. Brush Talks From Dream Brook (in Chinese). Beijing: China Publishing House

    Google Scholar 

  • Shen W, Wang J L, Wang J L, Jiang X S, Mao Q Y. 2016. Hydrochemistry and δ13CDIC features of cave water in Naduo cave, Guizhou and their influencing factors (in Chinese with English abstract). Carsol Sin, 35: 98–105

    Google Scholar 

  • Slota Jr P J, Jull A J T, Linick T W, Toolin L J. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon, 29: 303–306

    Google Scholar 

  • Spracklen D V, Garcia-Carreras L. 2015. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys Res Lett, 42: 9546–9552

    Google Scholar 

  • Springer G S, White D M, Rowe H D, Hardt B, Nivanthi Mihimdukulasooriya L, Cheng H, Edwards R L. 2010. Multiproxy evidence from caves of Native Americans altering the overlying landscape during the late Holocene of east-central North America. Holocene, 20: 275–283

    Google Scholar 

  • Subramanian M. 2019. Anthropocene now: Influential panel votes to recognize Earth’s new epoch. Nature, doi: https://doi.org/10.1038/d41586-019-01641-5

  • Tan L C, An Z S, Huh C A, Cai Y J, Shen C C, Shiau L J, Yan L, Cheng H, Edwards R L. 2014. Cyclic precipitation variation on the western Loess Plateau of China during the past four centuries. Sci Rep, 4: 6381

    Google Scholar 

  • Tan L C, Cai Y J, An Z S, Edwards R L, Cheng H, Shen C C, Zhang H W. 2011. Centennial- to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: Records from stalagmites in Huangye Cave. Holocene, 21: 287–296

    Google Scholar 

  • Tan L C, Cai Y J, Cheng H, Edwards R L, Gao Y L, Xu H, Zhang H W, An Z S. 2018a. Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years. Earth Planet Sci Lett, 482: 580–590

    Google Scholar 

  • Tan L C, Cai Y J, Cheng H, Edwards R L, Lan J H, Zhang H W, Li D, Ma L, Zhao P P, Gao Y L. 2018b. High resolution monsoon precipitation changes on southeastern Tibetan Plateau over the past 2300 years. Quat Sci Rev, 195: 122–132

    Google Scholar 

  • Tan L C, Shen C C, Löwemark L, Chawchai S, Edwards R L, Cai Y J, Breitenbach S F M, Cheng H, Chou Y C, Duerrast H, Partin J W, Cai W J, Chabangborn A, Gao Y L, Kwiecien O, Wu C C, Shi Z G, Hsu H H, Wohlfarth B. 2019. Rainfall variations in central Indo-Pacific over the past 2700 y. Proc Natl Acad Sci USA, 116: 17201–17206

    Google Scholar 

  • Tan L C, Zhang H W, Qin S J, An Z S. 2013. Climatic and Anthropogenic Impacts on δ13C Variations in a Stalagmite from Central China. Terr Atmos Ocean Sci, 24: 333–343

    Google Scholar 

  • Vanacker V, Vanderschaeghe M, Govers G, Willems E, Poesen J, Deckers J, De Bievre B. 2003. Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds. Geomorphology, 52: 299–315

    Google Scholar 

  • Wang B Q. 2006. Studies on changes of cropping structure and their influences in Shandong since Ming and Qing dynasties (in Chinese). Dissertation for Doctoral Degree. Nanjing: Nanjing Agricultural University

    Google Scholar 

  • Wang Q, Zhou H Y, Chi H, Cheng K, Wang H Y, Ma Q Q, Wang C S. 2015. The stalagmite records of climate and environment change on the western Shandong peninsula during the past 1000 years: δ18O and δ13C values (I) (in Chinese with English abstract). Mar Geol Quat Geol, 35: 135–142

    Google Scholar 

  • Wang T L, Tan L C, Xu H, Zang J J, Li D, Lan J H, Han Y M, Li L. 2019. The selection of a primary marker for the Anthropocene. Sci Bull, 64: 1643–1645

    Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294: 2345–2348

    Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451: 1090–1093

    Google Scholar 

  • Wang Z T, Sheng L X. 1994. China Ecological Environment Change and Population Pressure (in Chinese). Beijing: China Environmental Science Press

    Google Scholar 

  • Winckler J, Lejeune Q, Reick C H, Pongratz J. 2019. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys Res Lett, 46: 745–755

    Google Scholar 

  • Yang Q, Li X Q. 2015. Investigation of the controlled factors influencing carbon isotope composition of foxtail and common millet on the Chinese Loess Plateau. Sci China Earth Sci, 58: 2296–2308

    Google Scholar 

  • Yang X L, Yang H, Wang B Y, Huang L J, Shen C C, Edwards R L, Cheng H. 2019. Early-Holocene monsoon instability and climatic optimum recorded by Chinese stalagmites. Holocene, 29: 1059–1067

    Google Scholar 

  • Yang Y, Yuan D X, Cheng H, Zhang M L, Qin J M, Lin Y S, Zhu X Y, Edwards R L. 2010. Precise dating of abrupt shifts in the Asian monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou Province, China. Sci China Earth Sci, 53: 633–641

    Google Scholar 

  • Yasur G, Ayalon A, Matthews A, Zilberman T, Marder O, Barzilai O, Boaretto E, Hershkovitz I, Bar-Matthews M. 2019. Climatic and environmental conditions in the Western Galilee, during Late Middle and Upper Paleolithic periods, based on speleothems from Manot Cave, Israel. J Human Evol, doi: https://doi.org/10.1016/j.jhevol.2019.04.004

  • Yuan D X, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M L, Qing J M, Lin Y S, Wang Y J, Wu J Y, Dorale J A, An Z S, Cai Y J. 2004. Timing, duration, and transitions of the last Interglacial Asian monsoon. Science, 304: 575–578

    Google Scholar 

  • Zhang H W, Cai Y J, Tan L C, Cheng H, Qin S J, An Z S, Edwards R L, Ma L. 2015. Large variations of δ13C values in stalagmites from southeastern China during historical times: Implications for anthropogenic deforestation. Boreas, 44: 511–525

    Google Scholar 

  • Zhang H B, Griffiths M L, Chiang J C H, Kong W W, Wu S T, Atwood A, Huang J H, Cheng H, Ning Y F, Xie S C. 2018. East Asian hydroclimate modulated by the position of the westerlies during Termination I. Science, 362: 580–583

    Google Scholar 

  • Zhang P Z, Cheng H, Edwards R L, Chen F H, Wang Y J, Yang X L, Liu J, Tan M, Wang X F, Liu J H, An C L, Dai Z B, Zhou J, Zhang D Z, Jia J H, Jin L Y, Johnson K R. 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322: 940–942

    Google Scholar 

  • Zhang Z H. 2006. Introduction to Chinese Archaeology (in Chinese). Nanjing: Nanjing University Press

    Google Scholar 

  • Zhao K, Wang Y J, Edwards R L, Cheng H, Liu D B. 2010. High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition. Earth Planet Sci Lett, 298: 191–198

    Google Scholar 

  • Zhou W J, Lu X F, Wu Z K, Zhao W N, Huang C H, Li L L, Chen P, Xin Z H. 2007. New results on Xi’an-AMS and sample preparation systems at Xi’an-AMS center. Nucl Instrum Meth B, 262: 135–142

    Google Scholar 

  • Zhou W J, Zhao X L, Lu X F, Liu L, Wu Z K, Cheng P, Zhao W N, Huang C H. 2006. The 3MV multi-element AMS in Xi’an, China: Unique features and preliminary tests. Radiocarbon, 48: 285–293

    Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for their constructive suggestions. This work was supported by the National Natural Science Foundation of China (Grant No. 41991252), the Strategic Priority Research Program (Grant No. XDB40000000), the International Partnership Program (Grant No. 132B61KYSB20170005) of Chinese Academy of Sciences, and the National Natural Science Foundation of China (Grant No. 41888101). It was also partly supported by the USA National Science Foundation (Grant Nos. 0908792, 1211299 & 1702816 to R. Lawrence EDWARDS and Hai CHENG), the 111 Program of China (Grant No. D19002) and the Belt & Road Center for Climate and Environment Studies of IEECAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangcheng Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Liu, W., Wang, T. et al. A multiple-proxy stalagmite record reveals historical deforestation in central Shandong, northern China. Sci. China Earth Sci. 63, 1622–1632 (2020). https://doi.org/10.1007/s11430-019-9649-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9649-1

Keywords

Navigation