Skip to main content
Log in

China’s intra- and inter-national carbon emission transfers by province: A nested network perspective

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Since China carries an increasingly significant responsibility in carbon emission reduction, a systematic assessment from the multi-scale and multi-regional perspective is essential to examine the region-specific carbon emissions and different kinds of carbon transfer patterns. By identifying carbon emission flows among 31 domestic provincial administrative regions and 184 foreign countries/economies, this work examines the domestic and foreign carbon emission flows of Chinese provinces/municipalities based on the intra- and inter-national relations. Overall, the provinces and municipalities in China are divided into 4 patterns according to carbon emission flows, among which inland provinces mainly engage in domestic carbon emission transfers, western regions generally receive carbon emissions with main carbon outflows in northeastern and central provinces, and coastal regions play an essential role in balancing carbon emission surpluses and deficits between domestic and foreign regions. For different sub-regions in China, recognizing carbon emission transfer relations contributes to the synergetic and sustainable regional development from a tele-connected perspective. With the nested network analysis, the multi-scale and multi-regional assessments focusing upon China’s provinces and municipalities extend the existing research to both national and global scales, providing a solid foundation for sustainable regional development in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrew R M, Peters G P. 2013. A multi-region input-output table based on the global trade analysis project database (GTAP-MRIO). Economic Syst Res, 25: 99–121

    Google Scholar 

  • Bruckner M, Giljum S, Lutz C, Wiebe K S. 2012. Materials embodied in international trade—Global material extraction and consumption between 1995 and 2005. Glob Environ Change, 22: 568–576

    Google Scholar 

  • Caro D, Bastianoni S, Borghesi S, Pulselli F M. 2014. On the feasibility of a consumer-based allocation method in national GHG inventories. Ecol Indicators, 36: 640–643

    Google Scholar 

  • Chen G Q, Guo S, Shao L, Li J S, Chen Z M. 2013. Three-scale input-output modeling for urban economy: Carbon emission by Beijing 2007. Commun Nonlinear Sci Numer Simulat, 18: 2493–2506

    Google Scholar 

  • Chen G Q, Han M Y. 2015a. Global supply chain of arable land use: Production-based and consumption-based trade imbalance. Land Use Policy, 49: 118–130

    Google Scholar 

  • Chen G Q, Han M Y. 2015b. Virtual land use change in China 2002–2010: Internal transition and trade imbalance. Land Use Policy, 47: 55–65

    Google Scholar 

  • Chen J, Wu Y, Wen J, Cheng S, Wang J. 2017. Regional differences in China’s fossil energy consumption: An analysis for the period 1997–2013. J Cleaner Production, 142: 578–588

    Google Scholar 

  • Chen Z M, Chen G Q. 2011. Embodied carbon dioxide emission at supranational scale: A coalition analysis for G7, BRIC, and the rest of the world. Energy Policy, 39: 2899–2909

    Google Scholar 

  • Chen Z M, Ohshita S, Lenzen M, Wiedmann T, Jiborn M, Chen B, Lester L, Guan D, Meng J, Xu S, Chen G, Zheng X, Xue J J, Alsaedi A, Hayat T, Liu Z. 2018. Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. Nat Commun, 9: 3581–3589

    Google Scholar 

  • General Administration of Customs, P. R. China. 2013. China Customs Statistical Yearbook 2012. Beijing: China Statistical Publishing House

    Google Scholar 

  • Davis S J, Caldeira K. 2010. Consumption-based accounting of CO2 emissions. Proc Natl Acad Sci USA, 107: 5687–5692

    Google Scholar 

  • Davis S J, Peters G P, Caldeira K. 2011. The supply chain of CO2 emissions. Proc Natl Acad Sci USA, 108: 18554–18559

    Google Scholar 

  • Dietzenbacher E, Los B, Stehrer R, Timmer M, de Vries G. 2013. The construction of world input-output tables in the WIOD project. Economic Syst Res, 25: 71–98

    Google Scholar 

  • Fang D, Chen B. 2015. Ecological network analysis for a virtual water network. Environ Sci Technol, 49: 6722–6730

    Google Scholar 

  • Fang D, Chen B, Hubacek K, Ni R, Chen L, Feng K, Lin J. 2019. Clean air for some: Unintended spillover effects of regional air pollution policies. Sci Adv, 5: eaav4707

    Google Scholar 

  • Feng K, Davis S J, Sun L, Li X, Guan D, Liu W, Liu Z, Hubacek K. 2013. Outsourcing CO2 within China. Proc Natl Acad Sci USA, 110: 11654–11659

    Google Scholar 

  • Feng K, Hubacek K, Sun L, Liu Z. 2014. Consumption-based CO2 accounting of China’s megacities: The case of Beijing, Tianjin, Shanghai and Chongqing. Ecol Indicators, 47: 26–31

    Google Scholar 

  • Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S. 2012. Integrating ecological, carbon and water footprint into a “Footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecol Indicators, 16: 100–112

    Google Scholar 

  • Gao B, Dunford M, Norcliffe G, Liu Z. 2017. Capturing gains by relocating global production networks: The rise of Chongqing’s notebook computer industry, 2008–2014. Eurasian Geography Economics, 58: 231–257

    Google Scholar 

  • Gao B, Liu W, Norcliffe G. 2012. Hypermobility and the governance of global production networks: The case of the Canadian cycle industry and its links with China and Taiwan. Canadian Geographer/Le Géographe Canadien, 56: 439–458

    Google Scholar 

  • Guan D, Hubacek K, Weber C L, Peters G P, Reiner D M. 2008. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob Environ Change, 18: 626–634

    Google Scholar 

  • Guo S, Shao L, Chen H, Li Z, Liu J B, Xu F X, Li J S, Han M Y, Meng J, Chen Z M, Li S C. 2012. Inventory and input-output analysis of CO2 emissions by fossil fuel consumption in Beijing 2007. Ecol Inf, 12: 93–100

    Google Scholar 

  • Guo S, Shen G Q. 2015. Multiregional input-output model for China’s farm land and water use. Environ Sci Technol, 49: 403–414

    Google Scholar 

  • Han M Y, Chen G Q, Mustafa M T, Hayat T, Shao L, Li J S, Xia X H, Ji X. 2015. Embodied water for urban economy: A three-scale input-output analysis for Beijing 2010. Ecol Model, 318: 19–25

    Google Scholar 

  • Han M Y, Chen G Q, Dunford M. 2019. Land use balance for urban economy: A multi-scale and multi-type perspective. Land Use Policy, 83: 323–333

    Google Scholar 

  • Han M, Yao Q, Liu W, Dunford M. 2018. Tracking embodied carbon flows in the Belt and Road regions. J Geogr Sci, 28: 1263–1274

    Google Scholar 

  • IEA. 2017. Energy Efficiency 2017. International Energy Agency Inomata S, Owen A. 2014. Comparative evaluation of MRIO databases. Economic Syst Res, 26: 239–244

    Google Scholar 

  • Lenzen M, Kanemoto K, Moran D, Geschke A. 2012a. Mapping the structure of the world economy. Environ Sci Technol, 46: 8374–8381

    Google Scholar 

  • Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A. 2012b. International trade drives biodiversity threats in developing nations. Nature, 486: 109–112

    Google Scholar 

  • Lenzen M, Moran D, Kanemoto K, Geschke A. 2013. Building Eora: A global multi-region input-output database at high country and sector resolution. Economic Syst Res, 25: 20–49

    Google Scholar 

  • Lenzen M, Murray J, Sack F, Wiedmann T. 2007. Shared producer and consumer responsibility—Theory and practice. Ecol Economics, 61: 27–42

    Google Scholar 

  • Li Y L, Chen B, Han M Y, Dunford M, Liu W, Li Z. 2018. Tracking carbon transfers embodied in Chinese municipalities’ domestic and foreign trade. J Cleaner Production, 192: 950–960

    Google Scholar 

  • Li Y L, Han M Y, Liu S Y, Chen G Q. 2019. Energy consumption and greenhouse gas emissions by buildings: A multi-scale perspective. Building Environ, 151: 240–250

    Google Scholar 

  • Liang Q M, Fan Y, Wei Y M. 2007. Multi-regional input-output model for regional energy requirements and CO2 emissions in China. Energy Policy, 35: 1685–1700

    Google Scholar 

  • Liang S, Wang Y, Cinnirella S, Pirrone N. 2015. Atmospheric mercury footprints of nations. Environ Sci Technol, 49: 3566–3574

    Google Scholar 

  • Liu Q, Wang Q. 2017. Sources and flows of China’s virtual SO2 emission transfers embodied in interprovincial trade: A multiregional input-output analysis. J Cleaner Production, 161: 735–747

    Google Scholar 

  • Liu S, Wu X, Han M, Zhang J, Chen B, Wu X, Wei W, Li Z. 2017. A three-scale input-output analysis of water use in a regional economy: Hebei province in China. J Cleaner Production, 156: 962–974

    Google Scholar 

  • Liu S Y, Zhang J J, Han M Y, Yao Y X, Chen G Q. 2019. Multi-scale water use balance for a typical coastal city in China. J Cleaner Production, 236: 117505

    Google Scholar 

  • Liu W D, Tang Z P, Han M Y, Li F Y, Liu H G. 2018. The 2012 China Multi-Regional Input-Output Table of 31 Provincial Units (in Chinese). Beijing: China Statistics Press

    Google Scholar 

  • Liu Z, Davis S J, Feng K, Hubacek K, Liang S, Anadon L D, Chen B, Liu J, Yan J, Guan D. 2016. Targeted opportunities to address the climate-trade dilemma in China. Nat Clim Change, 6: 201–206

    Google Scholar 

  • Liu Z, Guan D, Moore S, Lee H, Su J, Zhang Q. 2015. Climate policy: Steps to China’s carbon peak. Nature, 522: 279–281

    Google Scholar 

  • Liu Z, Liang S, Geng Y, Xue B, Xi F, Pan Y, Zhang T, Fujita T. 2012. Features trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing. Energy, 37: 245–254

    Google Scholar 

  • Meng J, Mi Z, Guan D, Li J, Tao S, Li Y, Feng K, Liu J, Liu Z, Wang X, Zhang Q, Davis S J. 2018. The rise of South-South trade and its effect on global CO2 emissions. Nat Commun, 9: 1871–1877

    Google Scholar 

  • Mi Z, Meng J, Guan D, Shan Y, Liu Z, Wang Y, Feng K, Wei Y M. 2017a. Pattern changes in determinants of Chinese emissions. Environ Res Lett, 12: 074003

    Google Scholar 

  • Mi Z, Wei Y M, Wang B, Meng J, Liu Z, Shan Y, Liu J, Guan D. 2017b. Socioeconomic impact assessment of China’s CO2 emissions peak prior to 2030. J Cleaner Production, 142: 2227–2236

    Google Scholar 

  • National Development and Reform Commission of People’s Republic of China. 2015. Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions. http://www.gov.cn/xinwen/2015-06/30/content_2887330.htm

  • Oita A, Malik A, Kanemoto K, Geschke A, Nishijima S, Lenzen M. 2016. Substantial nitrogen pollution embedded in international trade. Nat Geosci, 9: 111–115

    Google Scholar 

  • Pan C, Peters G P, Andrew R M, Korsbakken J I, Li S, Zhou P, Zhou D. 2018. Structural changes in provincial emission transfers within China. Environ Sci Technol, 52: 12958–12967

    Google Scholar 

  • Peters G P, Andrew R, Lennox J. 2011a. Constructing an environmentally-extended multi-regional input-output table using the Gtap database. Economic Syst Res, 23: 131–152

    Google Scholar 

  • Peters G P, Hertwich E G. 2008. CO2 embodied in international trade with implications for global climate policy. Environ Sci Technol, 42: 1401–1407

    Google Scholar 

  • Peters G P, Minx J C, Weber C L, Edenhofer O. 2011b. Growth in emission transfers via international trade from 1990 to 2008. Proc Natl Acad Sci USA, 108: 8903–8908

    Google Scholar 

  • Shan Y, Zhou Y, Meng J, Mi Z, Liu J, Guan D. 2019. Peak cement-related CO2 emissions and the changes in drivers in China. J Industrial Ecol, 23: 959–971

    Google Scholar 

  • Steen-Olsen K, Owen A, Hertwich E G, Lenzen M. 2014. Effects of sector aggregation on CO2 multipliers in multiregional input-output analyses. Economic Syst Res, 26: 284–302

    Google Scholar 

  • Steininger K, Lininger C, Droege S, Roser D, Tomlinson L, Meyer L. 2014. Justice and cost effectiveness of consumption-based versus production-based approaches in the case of unilateral climate policies. Glob Environ Change, 24: 75–87

    Google Scholar 

  • Su B, Ang B W. 2016. Multi-region comparisons of emission performance: The structural decomposition analysis approach. Ecol Indicators, 67: 78–87

    Google Scholar 

  • Su B, Huang H C, Ang B W, Zhou P. 2010. Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation. Energy Economics, 32: 166–175

    Google Scholar 

  • Su B, Ang B W. 2010. Input-output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation. Ecol Economics, 70: 10–18

    Google Scholar 

  • The State Council of the People’s Republic of China. 2016. Comprehensive Work Programme for Energy Conservation and Emission Reduction in the 13th Five-year Plan (in Chinese). http://www.gov.cn/zhengce/content/2016-11/04/content_5128619.htm

  • Wang C, Wang F. 2017. China can lead on climate change. Science, 357: 764

    Google Scholar 

  • Wang S, Chen B. 2016. Energy-water nexus of urban agglomeration based on multiregional input-output tables and ecological network analysis: A case study of the Beijing-Tianjin-Hebei region. Appl Energy, 178: 773–783

    Google Scholar 

  • Wiedmann T, Wilting H C, Lenzen M, Lutter S, Palm V. 2011. Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis. Ecol Economics, 70: 1937–1945

    Google Scholar 

  • Weinzettel J, Hertwich E G, Peters G P, Steen-Olsen K, Galli A. 2013. Affluence drives the global displacement of land use. Glob Environ Change, 23: 433–438

    Google Scholar 

  • Wilting H C. 2012. Sensitivity and uncertainty analysis in MRIO modelling; Some empirical results with regard to the dutch carbon footprint. Economic Syst Res, 24: 141–171

    Google Scholar 

  • Yan Y, Yang L. 2010. China’s foreign trade and climate change: A case study of CO2 emissions. Energy Policy, 38: 350–356

    Google Scholar 

  • Yu Y, Feng K, Hubacek K. 2013. Tele-connecting local consumption to global land use. Glob Environ Change, 23: 1178–1186

    Google Scholar 

  • Zhang B, Chen Z M, Xia X H, Xu X Y, Chen Y B. 2013. The impact of domestic trade on China’s regional energy uses: A multi-regional input-output modeling. Energy Policy, 63: 1169–1181

    Google Scholar 

  • Zhou Y, Shan Y, Liu G, Guan D. 2018. Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. Appl Energy, 228: 1683–1692

    Google Scholar 

  • Zhou Y, Li Y P, Huang G H. 2015. Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty. Appl Energy, 140: 350–364

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0602804), the National Natural Science Foundation of China (Grant Nos. 41701135, 41871118 & 41601172) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA20010102 & XDA23100402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Yao, Q., Lao, J. et al. China’s intra- and inter-national carbon emission transfers by province: A nested network perspective. Sci. China Earth Sci. 63, 852–864 (2020). https://doi.org/10.1007/s11430-019-9598-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9598-3

Keywords

Navigation