Skip to main content
Log in

Observations and modeling of flat subduction and its geological effects

  • Progress
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Flat subduction refers to low-angle (<10°) or sub-horizontal subduction of oceanic slabs. Flat subduction is only recognized in ~10% of present-day subduction zones, but its impact on the behavior of the overriding plate is particularly strong. For example, flat subduction zones are typically associated with stronger earthquakes. The deformation caused by typical flat subduction will transfer from the trench to the overriding continental interior and form a broad magma belt. The formation mechanism of flat subduction has been linked to the relative buoyancy of subducted oceanic plateaus, overthrusting of the overriding plate, hydrodynamic suction, and trench retreat. However, these mechanisms remain debated. This paper systematically analyzes and summarizes previous studies on flat subduction, and outlines the possible geological effects of flat subduction, such as intracontinental orogeny and magmatism. Using examples from numerical modeling, we discuss the possible formation mechanisms. The most important factors that control the formation of flat subduction are associated with overthrusting of the overriding plate and the arrival of an oceanic plateau at the subduction zone. In addition, trench retreat is necessary to enable flat subduction. Hydrodynamic suction contributes to the reduction of the slab dip angle, but is insufficient to form flat subduction. Future numerical modeling of flat subduction should carry out three-dimensional high-resolution thermo-mechanical simulation, considering the influence of crustal eclogitization (negative buoyancy) and mantle serpentinization (positive buoyancy) of oceanic lithosphere, in combination with geological and geophysical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott D, Drury R, Smith W H F. 1994. Flat to steep transition in subduction style. Geology, 22: 937–940

    Google Scholar 

  • Ahrens T J, Schubert G. 1975. Gabbro-eclogite reaction rate and its geophysical significance. Rev Geophys, 13: 383–400

    Google Scholar 

  • Angiboust S, Agard P. 2010. Initial water budget: The key to detaching large volumes of eclogitized oceanic crust along the subduction channel? Lithos, 120: 453–474

    Google Scholar 

  • Antonijevic S K, Wagner L S, Kumar A, Beck S L, Long M D, Zandt G, Tavera H, Condori C. 2015. The role of ridges in the formation and longevity of flat slabs. Nature, 524: 212–215

    Google Scholar 

  • Arcay D, Lallemand S, Doin M P. 2008. Back-arc strain in subduction zones: Statistical observations versus numerical modeling. Geochem Geophys Geosyst, 9: Q05015

  • Arrial P A, Billen M I. 2013. Influence of geometry and eclogitization on oceanic plateau subduction. Earth Planet Sci Lett, 363: 34–43

    Google Scholar 

  • Axen G J, van Wijk J W, Currie C A. 2018. Basal continental mantle lithosphere displaced by flat-slab subduction. Nat Geosci, 11: 961–964

    Google Scholar 

  • Barazangi M, Isacks B L. 1976. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology, 4: 686–692

    Google Scholar 

  • Batchelor G K. 1967. An Introduction to Fluid Dynamics. Cambridge, U K: Cambridge University Press

    Google Scholar 

  • Beate B, Monzier M, Spikings R, Cotten J, Silva J, Bourdon E, Eissen J P. 2001. Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: The Quimsacocha volcanic center. Earth Planet Sci Lett, 192: 561–570

    Google Scholar 

  • Ben-Avraham Z, Nur A, Jones D, Cox A. 1981. Continental accretion: From oceanic plateaus to allochthonous terranes. Science, 213: 47–54

    Google Scholar 

  • Betts P G, Moresi L, Miller M S, Willis D. 2015. Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China. Geosci Front, 6: 49–59

    Google Scholar 

  • Bird P. 1988. Formation of the Rocky Mountains, Western United States: A continuum computer model. Science, 239: 1501–1507

    Google Scholar 

  • Bourdon E, Eissen J P, Gutscher M A, Monzier M, Hall M L, Cotten J. 2003. Magmatic response to early aseismic ridge subduction: The Ecuadorian margin case (South America). Earth Planet Sci Lett, 205: 123–138

    Google Scholar 

  • Cao M J, Qin K Z, Li J L. 2011. Research progress on the flat subduction and its metallogenic effect, two cases analysis and some prospects. Acta Petrol Sin, 27: 3727–3748

    Google Scholar 

  • Chen S F, Wilson C J L. 1996. Emplacement of the Longmen Shan Thrust —Nappe Belt along the eastern margin of the Tibetan Plateau. J Struct Geol, 18: 413–430

    Google Scholar 

  • Christensen U R. 1996. The influence of trench migration on slab penetration into the lower mantle. Earth Planet Sci Lett, 140: 27–39

    Google Scholar 

  • Cizkova H, van Hunen J, van den Berg A P, Vlaar N J. 2002. The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity. Earth Planet Sci Lett, 193: 447–457

    Google Scholar 

  • Cloos M, Shreve R L. 1996. Shear-zone thickness and the seismicity of Chilean- and Marianas-type subduction zones. Geology, 24: 107–110

    Google Scholar 

  • Cole R B, Nelson S W, Layer P W, Oswald P J. 2006. Eocene volcanism above a depleted mantle slab window in southern Alaska. Geol Soc Am Bull, 118: 140–158

    Google Scholar 

  • Conrad C P, Bilek S, Lithgow-Bertelloni C. 2004. Great earthquakes and slab pull: Interaction between seismic coupling and plate-slab coupling. Earth Planet Sci Lett, 218: 109–122

    Google Scholar 

  • Contreras-Reyes E, Grevemeyer I, Flueh E R, Reichert C. 2008. Upper lithospheric structure of the subduction zone offshore of southern Arauco peninsula, Chile, at ~38°S. J Geophys Res, 113: B07303

  • Cross T A, Pilger R H. 1978. Tectonic controls of late cretaceous sedimentation, western interior, USA. Nature, 274: 653–657

    Google Scholar 

  • Cui S Q, Li J R. 1983. On the circum-Pacific Indosinian movement in China (in Chinese). Acta Geol Sin, 57: 51–62

    Google Scholar 

  • Davies J H. 1999. Simple analytic model for subduction zone thermal structure. Geophys J Int, 139: 823–828

    Google Scholar 

  • Defant M J, Jackson T E, Drummond M S, De Boer J Z, Bellon H, Fei-genson M D, Maury R C, Stewart R H. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview. J Geol Soc, 149: 569–579

    Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Google Scholar 

  • Defant M J, Drummond M S. 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21: 547–550

    Google Scholar 

  • Deng J F, Mo X X, Zhao H L, Luo Z H, Du Y S. 1994. Lithosphere root /de-roting and activation of the east China continent (in Chinese with English abstract). Geosciences, 3: 349–356

    Google Scholar 

  • Dickinson W R, Snyder W S. 1978. Plate tectonics of the Laramide orogeny. Geol Soc Am Mem, 151: 355–366

    Google Scholar 

  • Dumitru T A, Gans P B, Foster D A, Miller E L. 1991. Refrigeration of the western Cordilleran lithosphere during Laramide shallow-angle sub-duction. Geology, 19: 1145–1148

    Google Scholar 

  • English J M, Johnston S T. 2004. The laramide orogeny: What were the driving forces? Int Geol Rev, 46: 833–838

    Google Scholar 

  • Espurt N, Funiciello F, Martinod J, Guillaume B, Regard V, Faccenna C, Brusset S. 2008. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics, 27: TC3011

  • Fromm R, Zandt G, Beck S L. 2004. Crustal thickness beneath the Andes and Sierras Pampeanas at 30°S inferred from Pn apparent phase velocities. Geophys Res Lett, 31: L06625

  • Fuis G S, Moore T E, Plafker G, Brocher T M, Fisher M A, Mooney W D, Nokleberg W J, Page R A, Beaudoin B C, Christensen N I, Levander A R, Lutter W J, Saltus R W, Ruppert N A. 2008. Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting. Geology, 36: 267–270

    Google Scholar 

  • Gao S, Zhang B R, Jin Z M, Kern H, Ting-Chuan Luo H, Zhao Z D. 1998. How mafic is the lower continental crust? Earth Planet Sci Lett, 106: 101–117

    Google Scholar 

  • Gardner T W, Fisher D M, Morell K D, Cupper M L. 2013. Upper-plate deformation in response to flat slab subduction inboard of the aseismic Cocos Ridge, Osa Peninsula, Costa Rica. Lithosphere, 5: 247–264

    Google Scholar 

  • Gerya T V, Fossati D, Cantieni C, Seward D. 2009. Dynamic effects of aseismic ridge subduction: Numerical modelling. Eur J Mineral, 21: 649–661

    Google Scholar 

  • Gerya T V, Yuen D A. 2003. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys Earth Planet Inter, 140: 293–318

    Google Scholar 

  • Gómez-Tuena A, LaGatta A B, Langmuir C H, Goldstein S L, Ortega-Gutiérrez F, Carrasco-Núñez G. 2003. Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: Mantle sources, slab contributions, and crustal contamination. Geochem Geophys Geosyst, 4: 8912

  • Grafe K, Frisch W, Villa I M, Meschede M. 2002. Geodynamic evolution of southern Costa Rica related to low-angle subduction of the Cocos Ridge: Constraints from thermochronology. Tectonophysics, 348: 187–204

    Google Scholar 

  • Grevemeyer I, Ranero C R, Flueh E R, Kläschen D, Bialas J. 2007. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth Planet Sci Lett, 258: 528–542

    Google Scholar 

  • Griffin W, Andi Z, O’reilly S, Ryan C. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower M F J, Chung S L, Lo C H, Lee T Y, eds. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union, 27: 107–126

    Google Scholar 

  • Grove T L, Till C B, Krawczynski M J. 2012. The role of H2O in sub-duction zone magmatism. Annu Rev Earth Planet Sci, 40: 413–439

    Google Scholar 

  • Gutscher M A. 2002. Andean subduction styles and their effect on thermal structure and interplate coupling. J South Am Earth Sci, 15: 3–10

    Google Scholar 

  • Gutscher M A. 2018. Scraped by flat-slab subduction. Nat Geosci, 11: 889–893

    Google Scholar 

  • Gutscher M A, Maury R, Eissen J P, Bourdon E. 2000a. Can slab melting be caused by flat subduction? Geology, 28: 535–538

    Google Scholar 

  • Gutscher M A, Spakman W, Bijwaard H, Engdahl E R. 2000b. Geody-namics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19: 814–833

    Google Scholar 

  • Hacker B R. 1996. Eclogite formation and the rheology, buoyancy, seismicity, and H2O content of oceanic crust. Geophys Monogr Ser, 96: 337–346

    Google Scholar 

  • Henderson L J, Gordon R G, Engebretson D C. 1984. Mesozoic aseismic ridges on the Farallon plate and southward migration of shallow sub-duction during the Laramide orogeny. Tectonics, 3: 121–132

    Google Scholar 

  • Henry S G, Pollack H N. 1988. Terrestrial heat flow above the Andean subduction zone in Bolivia and Peru. J Geophys Res, 93: 15153–15162

    Google Scholar 

  • Hsü K J, Li J, Chen H, Wang Q, Sun S, Sengör A M C. 1990. Tectonics of South China: Key to understanding West Pacific geology. Tectono-physics, 183: 9–39

    Google Scholar 

  • Hu J, Liu L, Hermosillo A, Zhou Q. 2016. Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation. Earth Planet Sci Lett, 438: 1–13

    Google Scholar 

  • Huangfu P P, Wang Y, Cawood P A, Li Z H, Fan W, Gerya T V. 2016a. Thermo-mechanical controls of flat subduction: Insights from numerical modeling. Gondwana Res, 40: 170–183

    Google Scholar 

  • Huangfu P P, Wang Y, Fan W, Li Z, Wang Y, Zhou Y. 2016b. Numerical modeling of flat subduction: Constraints from the ocean-continent convergence velocity. Geotect Metal, 40: 429–445

    Google Scholar 

  • Jarrard R D. 1986. Relations among subduction parameters. Rev Geophys, 24: 217–284

    Google Scholar 

  • Jischke M C. 1975. On the dynamics of descending lithospheric plates and slip zones. J Geophys Res, 80: 4809–4813

    Google Scholar 

  • Johnston S T, Thorkelson D J. 1997. Cocos-Nazca slab window beneath Central America. Earth Planet Sci Lett, 146: 465–474

    Google Scholar 

  • Kay S M, Abbruzzi J M. 1996. Magmatic evidence for Neogene litho-spheric evolution of the central Andean “flat-slab” between 30°S and 32°S. Tectonophysics, 259: 15–28

    Google Scholar 

  • Kay S M, Mpodozis C. 2002. Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. J South Am Earth Sci, 15: 39–57

    Google Scholar 

  • Kelemen P B, Hanghoj K. 2003. One view of the geochemistry of sub-duction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick R L, ed. Treatise in Geochemistry: The Crust. Oxford: Elsevier. 593–659

    Google Scholar 

  • Kerr A C. 2014. Oceanic plateaus. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Vol. 4: The crust. 2nd ed, Amsterdam: Elsevier. 631–667

    Google Scholar 

  • Kincaid C, Olson P. 1987. An experimental study of subduction and slab migration. J Geophys Res, 92: 13832–13840

    Google Scholar 

  • Lallemand S, Heuret A, Boutelier D. 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem Geophys Geosyst, 6: Q09006

  • Lefeldt M, Ranero C R, Grevemeyer I. 2012. Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches. Geochem Geophys Geosyst, 13: Q05013

  • Leng W, Huang L. 2018. Progress in numerical modeling of subducting plate dynamics. Sci China Earth Sci, 61: 1761–1774

    Google Scholar 

  • Li Z X. 1998. Tectonic evolution of the major East Asian lithospheric block since the Mid-Proterozoic: A synthesis. In: Martin F J, Chung S L, Lo C H, Lee T Y, eds. Mantle Dynamics and Plate Interactions in East Asia. Washington DC: Am Geophys Union Geodynamics Ser. 221–243

    Google Scholar 

  • Li X H, Li Z X, Li W X, Wang Y. 2006. Initiation of the indosinian orogeny in South China: Evidence for a Permian magmatic arc on Hainan Island. J Geol, 114: 341–353

    Google Scholar 

  • Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182

    Google Scholar 

  • Liu L, Spasojevic S, Gurnis M. 2008. Reconstructing farallon plate sub-duction beneath North America back to the Late Cretaceous. Science, 322: 934–938

    Google Scholar 

  • Liu L, Gurnis M. 2010. Dynamic subsidence and uplift of the Colorado Plateau. Geology, 38: 663–666

    Google Scholar 

  • Liu L, Gurnis M, Seton M, Saleeby J, Müller R D, Jackson J M. 2010. The role of oceanic plateau subduction in the Laramide orogeny. Nat Geosci, 3: 353–357

    Google Scholar 

  • Liu L, Stegman D R. 2011. Segmentation of the Farallon slab. Earth Planet Sci Lett, 311: 1–10

    Google Scholar 

  • Liu S, Currie C A. 2016. Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction. Tectonophysics, 666: 33–47

    Google Scholar 

  • Livaccari R F, Burke K, Sengör A M C. 1981. Was the Laramide orogeny related to subduction of an oceanic plateau? Nature, 289: 276–278

    Google Scholar 

  • Luyendyk B P. 1970. Dips of downgoing lithospheric plates beneath island arcs. Geol Soc Am Bull, 81: 3411–3416

    Google Scholar 

  • Ma Y, Clayton R W. 2014. The crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis. Earth Planet Sci Lett, 395: 61–70

    Google Scholar 

  • Manea V, Gurnis M. 2007. Subduction zone evolution and low viscosity wedges and channels. Earth Planet Sci Lett, 264: 22–45

    Google Scholar 

  • Manea V C, Manea M. 2011. Flat-slab thermal structure and evolution beneath Central Mexico. Pure Appl Geophys, 168: 1475–1487

    Google Scholar 

  • Manea V C, Pérez-Gussinyé M, Manea M. 2012. Chilean flat slab sub-duction controlled by overriding plate thickness and trench rollback. Geology, 40: 35–38

    Google Scholar 

  • Manea V C, Manea M, Ferrari L, Orozco-Esquivel T, Valenzuela R W, Husker A, Kostoglodov V. 2017. A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile. Tectonophysics, 695: 27–52

    Google Scholar 

  • Marot M, Monfret T, Pardo M, Ranalli G, Nolet G. 2013. A double seismic zone in the subducting Juan Fernandez Ridge of the Nazca Plate (32°S), central Chile. J Geophys Res-Solid Earth, 118: 3462–3475

    Google Scholar 

  • Marot M, Monfret T, Gerbault M, Nolet G, Ranalli G, Pardo M. 2014. Flat versus normal subduction zones: A comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29°-35°S). Geophys J Int, 199: 1633–1654.

    Google Scholar 

  • Marshall J S, Anderson R S. 1995. Quaternary uplift and seismic cycle deformation, Peninsula de Nicoya, Costa Rica. Geol Soc Am Bull, 107: 463–473

    Google Scholar 

  • Martinod J, Funiciello F, Faccenna C, Labanieh S, Regard V. 2005. Dynamical effects of subducting ridges: Insights from 3-D laboratory models. Geophys J Int, 163: 1137–1150

    Google Scholar 

  • Maxson J, Tikoff B. 1996. Hit-and-run collision model for the Laramide orogeny, western United States. Geology, 24: 968–972

    Google Scholar 

  • Megard F, Philip H. 1976. Plio-Quaternary tectono-magmatic zonation and plate tectonics in the Central Andes. Earth Planet Sci Lett, 33: 231–238

    Google Scholar 

  • Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithop-robes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc Lond Spec Publ, 76: 71–81

    Google Scholar 

  • Michaud F, Witt C, Royer J Y. 2009. Influence of the subduction of the Carnegie volcanic ridge on Ecuadorian geology: Reality and fiction. Geol Soc Am Mem, 204: 217–228

    Google Scholar 

  • Mori L, Gómez-Tuena A, Cai Y, Goldstein S L. 2007. Effects of prolonged flat subduction on the Miocene magmatic record of the central Trans-Mexican Volcanic Belt. Chem Geol, 244: 452–473

    Google Scholar 

  • Morris P A. 1995. Slab melting as an explanation of quaternary volcanism and aseismicity in southwest Japan. Geology, 23: 395–398

    Google Scholar 

  • Muñoz M. 2005. No flat Wadati-Benioff Zone in the central and southern central Andes. Tectonophysics, 395: 41–65

    Google Scholar 

  • Murphy J B, Oppliger G L, Brimhall G H, Hynes A. 1998. Plume-modified orogeny: An example from the western United States. Geology, 26: 731–734

    Google Scholar 

  • Murphy J B, van Staal C R, Duncan Keppie J. 1999. Middle to late Paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style plume-modified orogeny? Geology, 27: 653–656

    Google Scholar 

  • Murphy J B, Hynes A J, Johnston S T, Keppie J D. 2003. Reconstructing the ancestral Yellowstone plume from accreted seamounts and its relationship to flat-slab subduction. Tectonophysics, 365: 185–194

    Google Scholar 

  • Oldow J S, Bally A W, Avé Lallemant H G. 1990. Transpression, orogenic float, and lithospheric balance. Geology, 18: 991–994

    Google Scholar 

  • Oleskevich D A, Hyndman R D, Wang K. 1999. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. J Geophys Res, 104: 14965–14991

    Google Scholar 

  • Oyarzun R, Márquez A, Lillo J, López I, Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Min Dep, 36: 794–798

    Google Scholar 

  • Page R A, Stephens C D, Lahr J C. 1989. Seismicity of the Wrangell and Aleutian Wadati-Benioff Zones and the North American Plate along the Trans-Alaska Crustal Transect, Chugach Mountains and Copper River Basin, southern Alaska. J Geophys Res, 94: 16059–16082

    Google Scholar 

  • Peacock S M, Rushmer T, Thompson A B. 1994. Partial melting of sub-ducting oceanic crust. Earth Planet Sci Lett, 121: 227–244

    Google Scholar 

  • Peacock S M. 1996. Thermal and petrologic structure of subduction zones. In: Bebout E, Schol D W, Kirby S H, Blatt J P, eds. Subduction: Top to Bottom. Geophys Monograph Ser, 96: 119–133

    Google Scholar 

  • Penniston-Dorland S C, Kohn M J, Manning C E. 2015. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth Planet Sci Lett, 428: 243–254

    Google Scholar 

  • Price R A. 1981. The Cordilleran foreland thrust and fold belt in the southern Canadian Rocky Mountains. Geol Soc Lond Spec Publ, 9: 427–448

    Google Scholar 

  • Protti M, Gu¨ndel F, McNally K. 1994. The geometry of the Wadati-Be-nioff zone under southern Central America and its tectonic significance: Results from a high-resolution local seismographic network. Phys Earth Planet Inter, 84: 271–287

    Google Scholar 

  • Ramos V A, Folguera A. 2009. Andean flat-slab subduction through time. Geol Soc Lond Spec Publ, 327: 31–54

    Google Scholar 

  • Ranero C R, Phipps Morgan J, McIntosh K, Reichert C. 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425: 367–373

    Google Scholar 

  • Ranero C R, Sallarès V. 2004. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench. Geology, 32: 549–552

    Google Scholar 

  • Reynard B. 2013. Serpentine in active subduction zones. Lithos, 178: 171–185

    Google Scholar 

  • Rodgers J. 1987. Chains of basement uplifts within cratons marginal to orogenic belts. Am J Sci, 287: 661–692

    Google Scholar 

  • Rodríguez-González J, Negredo A M, Billen M I. 2012. The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction. Geochem Geophys Geosyst, 13: Q01002

  • Rubie D C. 1990. Role of kinetics in the formation and preservation of eclogites. In: Carswell D A, ed. Eclogite Facies Rocks. New York: Chapman and Hall Press. 111–140

    Google Scholar 

  • Sacks I S. 1983. The subduction of young lithosphere. J Geophys Res, 88: 3355–3366

    Google Scholar 

  • Schellart W P, Stegman D R, Freeman J. 2008. Global trench migration velocities and slab migration induced upper mantle volume fluxes: Constraints to find an Earth reference frame based on minimizing viscous dissipation. Earth-Sci Rev, 88: 118–144

    Google Scholar 

  • Schepers G, van Hinsbergen D J J, Spakman W, Kosters M E, Boschman L M, McQuarrie N. 2017. South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes. Nat Commun, 8: 15249

  • Skinner S M, Clayton R W. 2011. An evaluation of proposed mechanisms of slab flattening in Central Mexico. Pure Appl Geophys, 168: 1461–1474

    Google Scholar 

  • Skinner S M, Clayton R W. 2013. The lack of correlation between flat slabs and bathymetric impactors in South America. Earth Planet Sci Lett, 371: 1–5

    Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012

  • Stern R, Lieu W, Mantey A, Ward A, Fechter T, Farrar E, McComber S, Windler J. 2017. A new animation of subduction zone processes developed for the undergraduate and community college audience. Geo-sphere, 13: 628–643

    Google Scholar 

  • Stevenson D J, Turner J S. 1977. Angle of subduction. Nature, 270: 334–336

    Google Scholar 

  • Suárez G, Monfret T, Wittlinger G, David C. 1990. Geometry of subduc-tion and depth of the seismogenic zone in the Guerrero gap, Mexico. Nature, 345: 336–338

    Google Scholar 

  • Syracuse E M, van Keken P E, Abers G A. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90

    Google Scholar 

  • Taramón J M, Rodríguez-González J, Negredo A M, Billen M I. 2015. Influence of cratonic lithosphere on the formation and evolution of flat slabs: Insights from 3-D time-dependent modeling. Geochem Geophys Geosyst, 16: 2933–2948

    Google Scholar 

  • Tetreault J L, Buiter S J H. 2014. Future accreted terranes: A compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments. J Geophys Res-Solid Earth, 5: 1243–1275

    Google Scholar 

  • Thiéblemont D, Stein G, Lescuyer J L. 1997. Gisements épithermaux et porphyriques: La connexion adakite. Earth Planet Sci Lett, 325: 103–109

    Google Scholar 

  • Tovish A, Schubert G, Luyendyk B P. 1978. Mantle flow pressure and the angle of subduction: Non-Newtonian corner flows. J Geophys Res, 83: 5892–5898

    Google Scholar 

  • Uyeda S, Kanamori H. 1979. Back-arc opening and the mode of subduction. J Geophys Res, 84: 1049–1061

    Google Scholar 

  • Uyeda S. 1983. Comparative subductology. Episodes, 5: 19–24

    Google Scholar 

  • Van Avendonk H J A, Holbrook W S, Lizarralde D, Denyer P. 2011. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica. Geochem Geophys Geosyst, 12: Q06009

  • van Hunen J, van den Berg A P, Vlaar N J. 2000. A thermo-mechanical model of horizontal subduction below an overriding plate. Earth Planet Sci Lett, 182: 157–169

    Google Scholar 

  • van Hunen J, van den Berg A P, Vlaar N J. 2002a. On the role of subducting oceanic plateaus in the development of shallow flat subduction. Tectonophysics, 352: 317–333

    Google Scholar 

  • van Hunen J, van den Berg A P, Vlaar N J. 2002b. The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru. Geophys Res Lett, 29: 35-1-35-4

  • van Hunen J, van den Berg A P, Vlaar N J. 2004. Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: A numerical parameter study. Phys Earth Planet Inter, 146: 179–194

    Google Scholar 

  • van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401

  • Vlaar N J. 1983. Thermal anomalies and magmatism due to lithospheric doubling and shifting. Earth Planet Sci Lett, 65: 322–330

    Google Scholar 

  • Vlaar N J. 1985. Precambrian Geodynamical Constraints. In: Tobi A C, Touret J L R, eds. The Deep Proterozoic Crust in the North Atlantic Provinces. Reidel Publ Co. 3–20

    Google Scholar 

  • Wan B, Xiao W, Windley B F, Gao J, Zhang L, Cai K. 2017. Contrasting ore styles and their role in understanding the evolution of the Altaids. Ore Geol Rev, 80: 910–922

    Google Scholar 

  • Wu F Y, Xu Y G, Gao S, Zheng J P. 2008. Controversial on studies of the lithospheric thinning and craton destruction of North China (in Chinese). Acta Petrol Sin, 24: 1145–1174

    Google Scholar 

  • Wu F Y, Yang J H, Xu Y G, Wilde S A, Walker R J. 2019. Destruction of the North China Craton in the Mesozoic. Annu Rev Earth Planet Sci, 47: 173–195

    Google Scholar 

  • Xu S T, Jiang L L, Liu Y C, Zhang Y. 1992. Tectonic pattern and evolution process of the Dabie Mountains (Anhui part) (in Chinese). Acta Geol Sin, 66: 1–14

    Google Scholar 

  • Xu Y G, Li H Y, Pang C J, He B. 2009. On the timing and duration of the destruction of the North China Craton. Chin Sci Bull, 54: 3379–3396

    Google Scholar 

  • Yang T, Moresi L, Gurnis M, Liu S, Sandiford D, Williams S, Capitanio F A. 2019. Contrasted East Asia and South America tectonics driven by deep mantle flow. Earth Planet Sci Lett, 517: 106–116

    Google Scholar 

  • Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Wöerner G, Volynets O N. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409: 500–504

    Google Scholar 

  • Zhang G W, Meng Q R, Yu Z P, Sun Y, Zhou D W, Guo A L. 1996. Orogenesis and dynamics of the Qinling orogen. Sci China Ser D-Earth Sci, 39: 225–234

    Google Scholar 

  • Zhao X X, Coe R S. 1987. Palaeomagnetic constraints on the collision and rotation of North and South China. Nature, 327: 141–144

    Google Scholar 

  • Zheng J, Xiong Q, Zhao Y, Li W. 2019. Subduction-zone peridotites and their records of crust-mantle interaction. Sci China Earth Sci, 62: 1033–1052

    Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

    Google Scholar 

  • Zheng Y F, Wu F Y. 2009. Growth and reworking of cratonic lithosphere. Chin Sci Bull, 54: 3347–3353

    Google Scholar 

  • Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and un-derplating of mafic magmas. Tectonophysics, 326: 269–287

    Google Scholar 

  • Ziagos J P, Blackwell D D, Mooser F. 1985. Heat flow in southern Mexico and the thermal effects of subduction. J Geophys Res, 90: 5410–5420

    Google Scholar 

  • Zhong S, Gurnis M. 1995. Mantle convection with plates and mobile, faulted plate margins. Science, 267: 838–843

    Google Scholar 

  • Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797

    Google Scholar 

  • Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587

    Google Scholar 

Download references

Acknowledgements

We thank professors Yi CHEN and Bo WAN for their constructive comments. We also thank the reviewers for providing constructive comments that substantially improved the manuscript. This work was supported by the National Key Research and Development of China (Grant No. 2016YFC0600406), the National Natural Science Foundation of China (Grant Nos. 41731072, 41574095), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB18000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Chen, L., Xiong, X. et al. Observations and modeling of flat subduction and its geological effects. Sci. China Earth Sci. 63, 1069–1091 (2020). https://doi.org/10.1007/s11430-019-9575-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9575-2

Keywords

Navigation