Skip to main content
Log in

The East Asian Monsoon since the Last Glacial Maximum: Evidence from geological records in northern China

  • Review
  • Special Topic: China since the Last Glacial Maximum
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The impact of global warming on the climate of northern China has been investigated intensively, and the behavior of the East Asian monsoon during previous intervals of climatic warming may provide insight into future changes. In this study, we use paleovegetation records from loess and lake sediments in the marginal zone of the East Asian summer monsoon (EASM) to reconstruct the EASM during the interval of warming from the Last Glacial Maximum (LGM) to the Holocene. The results show that during the LGM, desert steppe or dry steppe dominated much of northern China; in addition, the southeastern margin of the deserts east of the Helan Mountains had a distribution similar to that of the present-day, or was located slightly further south, due to the cold and dry climate caused by a strengthened East Asian winter monsoon (EAWM) and weakened EASM. During the last deglaciation, with the strengthening of the EASM and concomitant weakening of the EAWM, northern China gradually became humid. However, this trend was interrupted by abrupt cooling during the Heinrich 1 (H1) and Younger Dryas (YD) events. The EASM intensified substantially during the Holocene, and the monsoon rain belt migrated at least 300 km northwestwards, which led to the substantial shrinking of the desert area in the central and eastern part of northern China, and to the large expansion of plants favored by warm and humid conditions. Paleoclimatic records from the marginal zone of the EASM all show that the EASM reached its peak in the mid-Holocene, and past global climatic warming significantly strengthened the EASM, thereby greatly improving the ecological environment in northern China. Thus, northern China is expected to become wetter as global warming continues. Finally, high resolution Holocene vegetation records are sparse compared with the numerous records on the orbital timescale, and there is a need for more studies of Holocene climatic variability on the centennial-to-decadal scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan R P. 2014. Dichotomy of drought and deluge. Nat Geosci, 7: 700–701

    Google Scholar 

  • Alley R B, Clark P U. 1999. The deglaciation of the northern hemisphere: A global perspective. Annu Rev Earth Planet Sci, 27: 149–182

    Google Scholar 

  • An Z S, Porter S C, Kutzbach J E, Wu X H, Wang S M, Liu X D, Li X Q, Zhou W J. 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quat Sci Rev, 19: 743–762

    Google Scholar 

  • An Z S, Porter S C, Wu X H, Kutzbach J E, Wang S M, Liu X D, Li X Q, Wang J, Zhou W J, Xiao J Y, Liu J F, Lu J J. 1993. Holocene Optimum of Central and Eastern China and variability of the East Asian monsoon (in Chinese). Chin Sci Bull, 38: 1302–1305

    Google Scholar 

  • Andersen K K, Azuma N, Barnola J M, Bigler M, Biscaye P, Caillon N, Chappellaz J, Clausen H B, Dahl-Jensen D, Fischer H, Flückiger J, Fritzsche D, Fujii Y, Goto-Azuma K, Grønvold K, Gundestrup N S, Hansson M, Huber C, Hvidberg C S, Johnsen S J, Jonsell U, Jouzel J, Kipfstuhl S, Landais A, Leuenberger M, Lorrain R, Masson-Delmotte V, Miller H, Motoyama H, Narita H, Popp T, Rasmussen S O, Raynaud D, Rothlisberger R, Ruth U, Samyn D, Schwander J, Shoji H, Siggard- Andersen M L, Steffensen J P, Stocker T, Sveinbjörnsdóttir A E, Svensson A, Takata M, Tison J L, Thorsteinsson T, Watanabe O, Wilhelms F, White J W C, White J W C. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431: 147–151

    Google Scholar 

  • Back L, Russ K, Liu Z, Inoue K, Zhang J, Otto-Bliesner B. 2013. Global hydrological cycle response to rapid and slow global warming. J Clim, 26: 8781–8786

    Google Scholar 

  • Berger W H, von Rad U. 2002. Decadal to millennial cyclicity in varves and turbidites from the Arabian Sea: Hypothesis of tidal origin. Glob Planet Change, 34: 313–325

    Google Scholar 

  • Bianchi G G, McCave I N. 1999. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature, 397: 515–517

    Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans M N, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294: 2130–2136

    Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278: 1257–1266

    Google Scholar 

  • Bradley R S, England J H. 2008. The Younger Dryas and the sea of ancient ice. Quat Res, 70: 1–10

    Google Scholar 

  • Brauer A, Haug G H, Dulski P, Sigman D M, Negendank J F W. 2008. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat Geosci, 1: 520–523

    Google Scholar 

  • Broecker W S, Andree M, Wolfli W, Oeschger H, Bonani G, Kennett J, Peteet D. 1988. The chronology of the last deglaciation: Implications to the cause of the Younger Dryas event. Paleoceanography, 3: 1–19

    Google Scholar 

  • Broecker W S, Kennett J P, Flower B P, Teller J T, Trumbore S, Bonani G, Wolfli W. 1989. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature, 341: 318–321

    Google Scholar 

  • Broecker W S, Peteet D M, Rind D. 1985. Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315: 21–26

    Google Scholar 

  • Broecker W S, Putnam A E. 2013. Hydrologic impacts of past shifts of Earth’s thermal equator offer insight into those to be produced by fossil fuel CO2. Proc Natl Acad Sci USA, 110: 16710–16715

    Google Scholar 

  • Cai B G, Edwards R L, Cheng H, Tan M, Wang X, Liu T S. 2008. A dry episode during the Younger Dryas and centennial-scale weak monsoon events during the early Holocene: A high-resolution stalagmite record from southeast of the Loess Plateau, China. Geophys Res Lett, 35: L02705

    Google Scholar 

  • Chase T N, Knaff J A, Pielke R A, Kalnay E. 2003. Changes in global monsoon circulations since 1950. Nat Hazards, 29: 229–254

    Google Scholar 

  • Chen C T A, Lan H C, Lou J Y, Chen Y C. 2003. The dry Holocene Megathermal in Inner Mongolia. Palaeogeogr Palaeoclimatol Palaeoecol, 193: 181–200

    Google Scholar 

  • Chen F H, Cheng B, Zhao Y, Zhu Y, Madsen D B. 2006. Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. Holocene, 16: 675–684

    Google Scholar 

  • Chen F, Wu W, Holmes J A, Madsen D B, Jin M, Oviatt C G. 2003. A mid- Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China. Chin Sci Bull, 48: 1401–1410

    Google Scholar 

  • Chen F H, Xu Q H, Chen J H, Birks H J, Liu J B, Zhang S R, Jin L Y, An C B, Telford R J, Cao X Y, Wang Z L, Zhang X J, Selvaraj K, Lu H Y, Li Y C, Zheng Z, Wang H P, Zhou A F, Dong G H, Zhang J W, Huang X Z, Bloemendal J, Rao Z G. 2015. East Asian summer monsoon precipitation variability since the last deglaciation. Quat Sci Rev, 27: 351–364

    Google Scholar 

  • Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen D B, Huang X Z, Zhao Y, Sato T, Birks H J B, Boomer I, Chen J H, An C B, Wünnemann B. 2008. Holocene moisture evolution in arid central Asia and its outof- phase relationship with Asian monsoon history. Sci Rep, 5: 11186

    Google Scholar 

  • Chen F, Zhu Y, Li J, Shi Q, Jin L, Wünemann B. 2001. Abrupt Holocene changes of the Asian monsoon at millennial- and centennial-scales: Evidence from lake sediment document in Minqin Basin, NW China. Chin Sci Bull, 46: 1942–1947

    Google Scholar 

  • Chen J H, Rao Z G, Liu J B, Huang W, Feng S, Dong G H, Hu Y, Xu Q H, Chen F H. 2016. On the timing of the East Asian summer monsoon maximum during the Holocene—Does the speleothem oxygen isotope record reflect monsoon rainfall variability? Sci China Earth Sci, 59: 2328–2338

    Google Scholar 

  • Chen L X, Zhu Q G, Luo H B, He J H, Dong M, Feng Z Q. 1991. The East- Asian Monsoon (in Chinese). Beijing: China Meteorol Press. 362

    Google Scholar 

  • Clark P U, Dyke A S, Shakun J D, Carlson A E, Clark J, Wohlfarth B, Mitrovica J X, Hostetler S W, McCabe A M. 2009. The Last Glacial Maximum. Science, 325: 710–714

    Google Scholar 

  • Clark P U, Shakun J D, Baker P A, Bartlein P J, Brewer S, Brook E, Carlson A E, Cheng H, Kaufman D S, Liu Z, Marchitto T M, Mix A C, Morrill C, Otto-Bliesner B L, Pahnke K, Russell J M, Whitlock C, Adkins J F, Blois J L, Clark J, Colman S M, Curry W B, Flower B P, He F, Johnson T C, Lynch-Stieglitz J, Markgraf V, McManus J, Mitrovica J X, Moreno P I, Williams J W. 2012. Global climate evolution during the last deglaciation. Proc Natl Acad Sci USA, 109: E1134–E1142

    Google Scholar 

  • Dai X G, Wang P, Zhang K J. 2012. A decomposition study of moisture transport divergence for inter-decadal change in East Asia summer rainfall during 1958–2001. Chin Phys B, 21: 119201

    Google Scholar 

  • Debret M, Bout-Roumazeilles V, Grousset F, Desmet M, McManus J F, Massei N, Sebag D, Petit J R, Copard Y, Trentesaux A. 2007. The origin of the 1500-year climate cycles in Holocene North-Atlantic records. Clim Past, 3: 569–575

    Google Scholar 

  • Deng T. 2016. Records and characteristics of the mammalian faunas of northern China in the Middle Miocene climatic optimum (in Chinese with English abstract). Quat Sci, 36: 810-819

    Google Scholar 

  • Ding Y H. 2004. Seasonal march of the East-Asian summer monsoon. In: Chang C P, ed. East Asian Monsoon. Singapore: World Scientific Publishing Co. Pte. Ltd. 3–53

    Google Scholar 

  • Ding Y H, Si D, Sun Y, Liu Y J, Song Y F. 2014. Inter-decadal variations, causes and future projection of the Asian summer Monsoon. Eng Sci, 12: 22–28

    Google Scholar 

  • Ding Y, Sun Y, Wang Z, Zhu Y, Song Y. 2009. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int J Climatol, 29: 1926–1944

    Google Scholar 

  • Ding Y, Wang Z, Sun Y. 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int J Climatol, 28: 1139–1161

    Google Scholar 

  • Ding Z L, Rutter N W, Liu T S, Sun J M, Ren J Z, Rokosh D, Xiong S F. 1998. Correlation of Dansgaard-Oeschger cycles between Greenland ice and Chinese loess. Paleoclimates, 2: 281–291

    Google Scholar 

  • Ding Z L, Xiong S F, Sun J M, Yang S L, Gu Z Y, Liu T S. 1999. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 152: 49–66

    Google Scholar 

  • Ding Z L, Yang S L. 2017. Plio-Pleistocene changes in the arid and semiarid regions of northern China on geological time-scales. In: Fu C, Mao H, eds. Aridity Trend in Northern China. Singapore: World Scientific Publishing Co. Pte. Ltd. 5–26

    Google Scholar 

  • Ding Z L, Yang S L, Sun J M, Liu T S. 2001. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth Planet Sci Lett, 185: 99–109

    Google Scholar 

  • Dong G, Wang G, Chen H, Hasi. 1996. The formation and evolution of deserts in China. In: Geological Society of China, ed. Progress in Geology of China (1993–1996): Papers to 30th IGC. Beijing: China Ocean Press. 1001–1005

    Google Scholar 

  • Firestone R B, West A, Kennett J P, Becker L, Bunch T E, Revay Z S, Schultz P H, Belgya T, Kennett D J, Erlandson J M, Dickenson O J, Goodyear A C, Harris R S, Howard G A, Kloosterman J B, Lechler P, Mayewski P A, Montgomery J, Poreda R, Darrah T, Hee S S Q, Smith A R, Stich A, Topping W, Wittke J H, Wolbach W S. 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc Natl Acad Sci USA, 104: 16016–16021

    Google Scholar 

  • Gadgil S. 2003. The Indian monsoon and its variability. Annu Rev Earth Planet Sci, 31: 429–467

    Google Scholar 

  • Gao L, Nie J S, Clemens S, Liu W G, Sun J M, Zech R, Huang Y S. 2012. The importance of solar insolation on the temperature variations for the past 110 kyr on the Chinese Loess Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 317-318: 128–133

    Google Scholar 

  • Geyh M A, Roeschmann G, Wijmstra T A, Middeldorp A A. 1983. The unreliability of 14C dates obtained from buried sandy Podzols. Radiocarbon, 25: 409–416

    Google Scholar 

  • Giraudeau J, Cremer M, Manthé S, Labeyrie L, Bond G. 2000. Coccolith evidence for instabilities in surface circulation south of Iceland during Holocene times. Earth Planet Sci Lett, 179: 257–268

    Google Scholar 

  • Halley E. 1686. An historical account of the trade winds, and monsoons, observable in the seas between and near the tropicks, with an attempt to assign the physical cause of the said winds. Phil Trans, 16: 153–168

    Google Scholar 

  • Han J M, Lu H Y, Wu N Q, Guo Z T. 1996. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction. Stud Geophys Geod, 40: 262–275

    Google Scholar 

  • Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming. J Clim, 19: 5686–5699

    Google Scholar 

  • Heller F, Shen C D, Beer J, Liu X M, Liu T S, Bronger A, Suter M, Bonani G. 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications. Earth Planet Sci Lett, 114: 385–390

    Google Scholar 

  • Hong Y T, Hong B, Lin Q H, Zhu Y X, Shibata Y, Hirota M, Uchida M, Leng X T, Jiang H B, Xu H, Wang H, Yi L. 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Sci Lett, 211: 371–380

    Google Scholar 

  • IPCC. Climate Change. 2013. The Physical Science Basis. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

  • Ji M, Shen J, Wu J, Wang Y. 2015. Paleovegetation and paleoclimate evolution of past 27.7 cal ka BP recorded by pollen and charcoal of Lake Xingkai, Northeastern China. In: Kashiwaya K, Shen J, Kim J Y, eds. Earth Surface Processes and Environmental Changes in East Asia: Records from Lake-catchment Systems. Tokyo: Springer. 81–94

    Google Scholar 

  • Jiang W Y, Chen Y F, Yang X X, Yang S L. 2013. Chinese Loess Plateau vegetation since the Last Glacial Maximum and its implications for vegetation restoration. J Appl Ecol, 50: 440–448

    Google Scholar 

  • Jiang W Y, Guiot J, Chu G Q, Wu H B, Yuan B Y, Hatté C, Guo Z T. 2010. An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semi-arid regions. Boreas, 39: 145–153

    Google Scholar 

  • Jiang W Y, Guo Z T, Sun X J, Wu H B, Chu G Q, Yuan B Y, Hatté C, Guiot J. 2006. Reconstruction of climate and vegetation changes of Lake Bayanchagan (Inner Mongolia): Holocene variability of the East Asian monsoon. Quat Res, 65: 411–420

    Google Scholar 

  • Jiang W Y, Yang S L, Yang X X, Gu N. 2016. Negative impacts of afforestation and economic forestry on the Chinese Loess Plateau and proposed solutions. Quat Int, 399: 165–173

    Google Scholar 

  • Jiang W Y, Yang X X, Cheng Y F. 2014. Spatial patterns of vegetation and climate on the Chinese Loess Plateau since the Last Glacial Maximum. Quat Int, 334-335: 52–60

    Google Scholar 

  • Jin H, Dong G, Su Z, Sun L. 2001. Reconstruction of the spatial patterns of desert/loess boundary belt in North China during the Holocene. Chin Sci Bull, 46: 969–974

    Google Scholar 

  • Johnson R G, McClure B T. 1976. A model for northern hemisphere continental ice sheet variation. Quat Res, 6: 325–353

    Google Scholar 

  • Kennett D J, Kennett J P, West A, Mercer C, Hee S S Q, Bement L, Bunch T E, Sellers M, Wolbach W S. 2009. Nanodiamonds in the Younger Dryas boundary sediment layer. Science, 323: 94

    Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci USA, 111: 15296–15303

    Google Scholar 

  • Levitus S, Antonov J I, Boyer T P, Stephens C. 2000. Warming of the world ocean. Science, 287: 2225–2229

    Google Scholar 

  • Li J, Wu Z, Jiang Z, He J. 2010. Can global warming strengthen the East Asian summer monsoon? J Clim, 23: 6696–6705

    Google Scholar 

  • Li S, Sun W, Li X Z, Zhang B. 1995. Sedimentary characteristics and environmental evolution of Otindag sandy land in Holocene (in Chinese with English abstract). J Desert Res, 15: 323–331

    Google Scholar 

  • Liu J, Chen J, Zhang X, Li Y, Rao Z, Chen F. 2015. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite d18O records. Earth-Sci Rev, 148: 194–208

    Google Scholar 

  • Liu X M, Rolph T, Bloemendal J, Shaw J, Liu T S. 1995. Quantitative estimates of palaeoprecipitation at Xifeng, in the loess plateau of China. Palaeogeogr Palaeoclimatol Palaeoecol, 113: 243–248

    Google Scholar 

  • Liu Y S C, Utescher T, Zhou Z, Sun B. 2011. The evolution of Miocene climates in North China: Preliminary results of quantitative reconstructions from plant fossil records. Palaeogeogr Palaeoclimatol Palaeoecol, 304: 308–317

    Google Scholar 

  • Liu Z, Otto-Bliesner B L, He F, Brady E C, Tomas R, Clark P U, Carlson A E, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J. 2009. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325: 310–314

    Google Scholar 

  • Lu H Y, Han J M, Wu N Q, Guo Z T. 1994. Magnetic susceptibility of the modern soils in China and paleoclimatic significance (in Chinese). Sci China Ser B, 24: 1290–1297

    Google Scholar 

  • Lu H Y, Wu N Q, Liu K B, Jiang H, Liu T S. 2007. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: Palaeoenvironmental reconstruction in the Loess Plateau. Quat Sci Rev, 26: 759–772

    Google Scholar 

  • Lu H Y, Yi S W, Xu Z W, Zhou Y L, Zeng L, Zhu F Y, Feng H, Dong L N, Zhuo H X, Yu K F, Mason J, Wang X Y, Chen Y Y, Lu Q, Wu B, Dong Z B, Qu J J, Wang X M, Guo Z T. 2013b. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum. Chin Sci Bull, 58: 2775–2783

    Google Scholar 

  • Lu H, Yi S, Liu Z, Mason J A, Jiang D, Cheng J, Stevens T, Xu Z, Zhang E, Jin L, Zhang Z, Guo Z, Wang Y, Otto-Bliesner B. 2013a. Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing. Geology, 41: 1023–1026

    Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker T F. 2008. High-resolution carbon dioxide concentration record 650000–800000 years before present. Nature, 453: 379–382

    Google Scholar 

  • Ma Z B, Cheng H, Tan M, Edwards R L, Li H C, You C F, Duan W H, Wang X, Kelly M J. 2012. Timing and structure of the Younger Dryas event in northern China. Quat Sci Rev, 41: 83–93

    Google Scholar 

  • Maher B A, Thompson R, Zhou L P. 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach. Earth Planet Sci Lett, 125: 461–471

    Google Scholar 

  • Mason J A, Lu H, Zhou Y, Miao X, Swinehart J B, Liu Z, Goble R J, Yi S. 2009. Dune mobility and aridity at the desert margin of northern China at a time of peak monsoon strength. Geology, 37: 947–950

    Google Scholar 

  • Nakagawa T, Tarasov P E, Kitagawa H, Yasuda Y, Gotanda K. 2006. Seasonally specific responses of the East Asian monsoon to deglacial climate changes. Geology, 34: 521–524

    Google Scholar 

  • Peterse F, Martínez-García A, Zhou B, Beets C J, Prins M A, Zheng H, Eglinton T I. 2014. Molecular records of continental air temperature and monsoon precipitation variability in East Asia spanning the past 130000 years. Quat Sci Rev, 83: 76–82

    Google Scholar 

  • Porter S C, An Z S. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375: 305–308

    Google Scholar 

  • Qian W H, Lin X, Zhu Y F, Xu Y, Fu J L. 2007. Climatic regime shift and decadal anomalous events in China. Clim Change, 84: 167–189

    Google Scholar 

  • Quade J, Broecker W S. 2009. Dryland hydrology in a warmer world: Lessons from the Last Glacial period. Eur Phys J Spec Top, 176: 21–36

    Google Scholar 

  • Rehfeld K, Laepple T. 2016. Warmer and wetter or warmer and dryer? Observed versus simulated covariability of Holocene temperature and rainfall in Asia. Earth Planet Sci Lett, 436: 1–9

    Google Scholar 

  • Rooth C. 1982. Hydrology and ocean circulation. Prog Oceanography, 11: 131–149

    Google Scholar 

  • Severinghaus J P, Brook E G. 1999. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science, 286: 930–934

    Google Scholar 

  • Shen J. 2013. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: A review and synthesis of lacustrine sediment archives. Chin Sci Bull, 58: 17–31

    Google Scholar 

  • Siegert M J, Dowdeswell J A, Melles M. 1999. Late weichselian glaciation of the Russian high arctic. Quat Res, 52: 273–285

    Google Scholar 

  • Snyder C W. 2016. Evolution of global temperature over the past two million years. Nature, 538: 226–228

    Google Scholar 

  • Stebich M, Mingram J, Han J T, Liu J Q. 2009. Late Pleistocene spread of (cool-)temperate forests in Northeast China and climate changes synchronous with the North Atlantic region. Glob Planet Change, 65: 56–70

    Google Scholar 

  • St-Onge G, Stoner J S, Hillaire-Marcel C. 2003. Holocene paleomagnetic records from the St. Lawrence Estuary, eastern Canada: Centennial- to millennial-scale geomagnetic modulation of cosmogenic isotopes. Earth Planet Sci Lett, 209: 113–130

    Google Scholar 

  • Sun J M. 2000. Origin of eolian sand mobilization during the past 2300 years in the Mu Us Desert, China. Quat Res, 53: 78–88

    Google Scholar 

  • Sun J M, Ding Z L, Liu T S. 1998. Desert distributions during the glacial maximum and climatic optimum: Example of China. Episodes, 21: 28–31

    Google Scholar 

  • Sun J M, Zhang Z Q, Zhang L Y. 2009. New evidence on the age of the Taklimakan Desert. Geology, 37: 159–162

    Google Scholar 

  • Svendsen J I, Alexanderson H, Astakhov V I, Demidov I, Dowdeswell J A, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten H W, Ingólfsson Ó, Jakobsson M, Kjær K H, Larsen E, Lokrantz H, Lunkka J P, Lyså A, Mangerud J, Matioushkov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert M J, Spielhagen R F, Stein R. 2004. Late Quaternary ice sheet history of northern Eurasia. Quat Sci Rev, 23: 1229–1271

    Google Scholar 

  • Svensson A, Andersen K K, Bigler M, Clausen H B, Dahl-Jensen D, Davies S M, Johnsen S J, Muscheler R, Parrenin F, Rasmussen S O, Röthlisberger R, Seierstad I, Steffensen J P, Vinther B M. 2008. A 60000 year Greenland stratigraphic ice core chronology. Clim Past, 4: 47–57

    Google Scholar 

  • Tan M, Liu T S, Hou J Z, Qin X G, Zhang H C, Li T Y. 2003. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophys Res Lett, 30: 1617

    Google Scholar 

  • Tang X, Chen B D, Liang P, Qian W H. 2010. Definition and features of the north edge of the East Asian summer monsoon. Acta Meteorol Sin, 24: 43–49

    Google Scholar 

  • Tao S Y, Chen L X. 1987. A review of recent research on the East Asian Summer Monsoon in China. In: Chang C P, Krishnamurti T N, eds. Monsoon Meteorology. Oxford: Oxford University Press. 60–92

    Google Scholar 

  • Turner T E, Swindles G T, Charman D J, Langdon P G, Morris P J, Booth R K, Parry L E, Nichols J E. 2016. Solar cycles or random processes? Evaluating solar variability in Holocene climate records. Sci Rep, 6: 23961

    Google Scholar 

  • Wang B, Clemens S C, Liu P. 2003. Contrasting the Indian and East Asian monsoons: Implications on geologic timescales. Mar Geol, 201: 5–21

    Google Scholar 

  • Wang H. 2001. The weakening of the Asian monsoon circulation after the end of 1970’s. Adv Atmos Sci, 18: 376–386

    Google Scholar 

  • Wang N A, Li Z, Li Y, Cheng H, Huang R. 2012. Younger Dryas event recorded by the mirabilite deposition in Huahai lake, Hexi Corridor, NW China. Quat Int, 250: 93–99

    Google Scholar 

  • Wang P X, Bian Y H, Li B H, Huang C Y. 1996. The Younger Dryas in the West Pacific marginal seas (in Chinese). Sci China Ser-D Earth Sci, 39: 522–532

    Google Scholar 

  • Wang P X. 2009. Global monsoon in a geological perspective. Chin Sci Bull, 54: 1113–1136

    Google Scholar 

  • Wang S M, Ji L, Yang X D, Xue B, Ma Y, Hu S Y. 1994. The record of Younger Dryas event in lake sediments from Jalai Nur, Inner Mongolia (in Chinese). Chin Sci Bull, 39: 831–835

    Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, He Y Q, Kong X G, An Z S, Wu J Y, Kelly M J, Dykoski C A, Li X D. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308: 854–857

    Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224000 years. Nature, 451: 1090–1093

    Google Scholar 

  • Wang Y, Amundson R, Trumbore S. 1996. Radiocarbon dating of soil organic matter. Quat Res, 45: 282–288

    Google Scholar 

  • Wang Y, Liu X, Herzschuh U. 2010. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Sci Rev, 103: 135–153

    Google Scholar 

  • Webster P J, Magaña V O, Palmer T N, Shukla J, Tomas R A, Yanai M, Yasunari T. 1998. Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res, 103: 14451–14510

    Google Scholar 

  • Wen R L, Xiao J L, Chang Z G, Zhai D Y, Xu Q H, Li Y C, Itoh S, Lomtatidze Z. 2010a. Holocene climate changes in the mid-high-latitude- monsoon margin reflected by the pollen record from Hulun Lake, northeastern Inner Mongolia. Quat Res, 73: 293–303

    Google Scholar 

  • Wen R L, Xiao J L, Chang Z G, Zhai D Y, Xu Q H, Li Y C, Itoh S. 2010b. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas, 39: 262–272

    Google Scholar 

  • Wen R L, Xiao J L, Fan J W, Zhang S R, Yamagata H. 2017. Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in northern China. Quat Sci Rev, 176: 29–35

    Google Scholar 

  • Wu J, Liu Q, Wang L, Chu G Q, Liu J Q. 2016. Vegetation and climate change during the last deglaciation in the Great Khingan Mountain, Northeastern China. Plos One, 11: e0146261

    Google Scholar 

  • Wu X H, An Z S, Wang S M, Liu X D, Li X Q, Zhou W J, Liu J F, Lu J J, Porter S C, Kutzbach J E. 1994. The temporal and spatial variation of East Asian Summer Monsoon in Holocene optimum in China (in Chinese with English abstract). Quat Sci, 14: 24–37

    Google Scholar 

  • Xiao J L, Chang Z G, Wen R L, Zhai D Y, Itoh S, Lomtatidze Z. 2009. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China. Holocene, 19: 899–908

    Google Scholar 

  • Xiao J L, Si B, Zhai D Y, Itoh S, Lomtatidze Z. 2008. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. J Paleolimnol, 40: 519–528

    Google Scholar 

  • Xiao J L, Xu Q H, Nakamura T, Yang X L, Liang W D, Inouchi Y. 2004. Holocene vegetation variation in the Daihai Lake region of north-central China: A direct indication of the Asian monsoon climatic history. Quat Sci Rev, 23: 1669–1679

    Google Scholar 

  • Xu D K, Lu H Y, Chu G Q, Wu N Q, Shen C M, Wang C, Mao L M. 2014. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record. Sci Rep, 4: 3611

    Google Scholar 

  • Xu Q H, Xiao J L, Li Y C, Tian F, Nakagawa T. 2010. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai Lake area, Inner Mongolia, China. J Clim, 23: 2856–2868

    Google Scholar 

  • Yang F, Lau K M. 2004. Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures. Int J Climatol, 24: 1625–1644

    Google Scholar 

  • Yang L R, Yue L P. 2011. The environmental transformation from late last glacial to Holocene of Otindag sandyland (in Chinese with English abstract). J Earth Environ, 2: 301–306

    Google Scholar 

  • Yang S L, Ding Z L. 2008. Advance-retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacial-interglacial cycles. Earth Planet Sci Lett, 274: 499–510

    Google Scholar 

  • Yang S L, Ding Z L. 2014. A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability. Geochem Geophys Geosyst, 15: 798–814

    Google Scholar 

  • Yang S L, Ding Z L, Feng S H, Jiang W Y, Huang X F, Guo L C. 2018. A strengthened East Asian Summer Monsoon during Pliocene warmth: Evidence from ‘red clay’ sediments at Pianguan, northern China. J Asian Earth Sci, 155: 124–133

    Google Scholar 

  • Yang S L, Ding Z L, Li Y Y, Wang X, Jiang W Y, Huang X F. 2015. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proc Natl Acad Sci USA, 112: 13178–13183

    Google Scholar 

  • Yang X X, Jiang W Y, Yang S L, Kong Z C, Luo Y L. 2015. Vegetation and climate changes in the western Chinese Loess Plateau since the Last Glacial Maximum. Quat Int, 372: 58–65

    Google Scholar 

  • Zhou W J, Yu X F, Jull A J T, Burr G, Xiao J Y, Lu X F, Xian F. 2004. High-resolution evidence from southern China of an early Holocene optimum and a mid-Holocene dry event during the past 18000 years. Quat Res, 62: 39–48

    Google Scholar 

  • Zhou X, Sun L G, Zhan T, Huang W, Zhou X Y, Hao Q Z, Wang Y H, He X Q, Zhao C, Zhang J, Qiao Y S, Ge J Y, Yan P, Yan Q, Shao D, Chu Z D, Yang W Q, Smol J P. 2016. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region. Earth Planet Sci Lett, 456: 39–46

    Google Scholar 

  • Zhu Z D. 1998. Concept, cause and control of desertification in China (in Chinese with English abstract). Quat Sci, 18: 145–155

    Google Scholar 

Download references

Acknowledgements

We thank Wen R L for providing vegetation data, and Huang X F and Wang Y D for formatting the document. We are grateful to two anonymous reviewers for their constructive comments. This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0603403), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB26000000 & XDA05120204) and the National Natural Science Foundation of China (Grant Nos. 41672175 & 41725010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiling Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Dong, X. & Xiao, J. The East Asian Monsoon since the Last Glacial Maximum: Evidence from geological records in northern China. Sci. China Earth Sci. 62, 1181–1192 (2019). https://doi.org/10.1007/s11430-018-9254-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9254-8

Keywords

Navigation