Skip to main content
Log in

Indication from finite-frequency tomography beneath the North China Craton: The heterogeneity of craton destruction

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

We picked new traveltime residual datasets in three frequency bands (0.02–0.1, 0.1–0.8, and 0.8–2.0 Hz) for P-waves from 793 teleseismic events and two frequency bands (0.02–0.1 and 0.1–0.8 Hz) for S-waves from 310 teleseismic events, recorded by 389 permanent stations of the China National Seismic Network and 832 broadband stations of 10 temporary arrays deployed in the North China Craton (NCC) region. The final datasets are composed of 65628 P-arrivals and 47050 S-arrivals. Based on previous research and our team’s 2012 tomographic work, we constructed new three-dimensional P-velocity and S-velocity models of the NCC through some improvements, such as augmenting a much denser station coverage in the western NCC, considering the incident angle effect in crustal correction and using a multi-frequency joint inversion tomographic technique. The new velocity models provide several salient features, from which we draw possible inferences on regional dynamic processes. We observed high-velocity anomalies in the mantle transition zone (MTZ). Obvious morphological heterogeneities suggest buckling and/or fragmentation of the subducted Pacific slab, and some of the slab materials are visible below 660-km discontinuities. The velocity structure of the eastern NCC is dominated by small-scale lateral heterogeneities. At shallow depths, high-velocity anomalies beneath the southern part of the eastern NCC and the Yanshan region likely represent a remnant of cratonic lithosphere, which may suggest that the NCC destruction is spatially non-uniform. We also detected a high-velocity anomaly in the Sulu Orogen extending downward to ∼300 km, which is seemingly controlled by the Tan-Lu Fault. The northern boundary of this anomaly spatially coincides with the Yantai-Qingdao-Wulian Fault, and is likely a remnant of the Yangtze cratonic lithosphere subducting northwestward. Significant low-velocity anomalies imaged beneath the central NCC show a spatial discordance between their northern and southern parts. The northern low-velocity anomaly extends downward to the top of MTZ with a lateral NW-SE strike, whereas the southern one tapers off at ∼200–300 km. Low-velocity anomalies are present beneath the Phanerozoic orogenic belts surrounding the NCC, the Paleoproterozoic Trans-North China Orogen, and the Tan-Lu Fault. This feature not only shows excellent spatial correlation with the orogens at the surface, it also exhibits a consistent vertical continuity in a depth range of 60–250 km. This intriguing feature suggests that the collisional orogenic belts and Tan-Lu Fault are inherited weak zones, which may play a key role in craton destruction. By combining multidisciplinary results in this area, we suggest that the spatial heterogeneities associated with the NCC destruction most likely result from the combined effects of a spatially non-uniform distribution of wet upwellings triggered by the subducted Pacific slab and pre-existing weak zones in the cratonic lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson D L, Sammis C. 1970. Partial melting in the upper mantle. Phys Earth Planet Inter, 3: 41–50

    Google Scholar 

  • Allen R M, Nolet G, Morgan W J, Vogfjörd K, Bergsson B H, Erlendsson P, Foulger G R, Jakobsdóttir S, Julian B R, Pritchard M, Ragnarsson S, Stefánsson R. 2002. Imaging the mantle beneath Iceland using integrated seismological techniques. J Geophys Res, 107: 3-1–3-16

    Google Scholar 

  • Artemieva I M, Mooney W D. 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study. J Geophys Res, 106: 16387–16414

    Google Scholar 

  • Artemieva I M, Billien M, Lévêque J J, Mooney W D. 2004. Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle. Geophys J Int, 157: 607–628

    Google Scholar 

  • Bao X, Xu M, Wang L, Mi N, Yu D, Li H. 2011. Lithospheric structure of the Ordos Block and its boundary areas inferred from Rayleigh wave dispersion. Tectonophysics, 499: 132–141

    Google Scholar 

  • Cammarano F, Goes S, Vacher P, Giardini D. 2003. Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet Inter, 138: 197–222

    Google Scholar 

  • Chang L, Wang C Y, Ding Z. 2012. Upper mantle anisotropy beneath North China from shear wave splitting measurements. Tectonophysics, 522–523: 235–242

    Google Scholar 

  • Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120: 96–115

    Google Scholar 

  • Chen L, Ai Y S. 2009. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. J Geophys Res, 114: B06307

    Google Scholar 

  • Chen L, Jiang M, Yang J, Wei Z, Liu C, Ling Y. 2014. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton. Geology, 42: 223–226

    Google Scholar 

  • Chen L, Tao W, Zhao L, Zheng T Y. 2008. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth Planet Sci Lett, 267: 56–68

    Google Scholar 

  • Chen L, Zheng T, Xu W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 111: B09312

    Google Scholar 

  • Chen M, Niu F, Liu Q, Tromp J, Zheng X. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons. J Geophys Res-Solid Earth, 120: 1762–1786

    Google Scholar 

  • Chevrot S, Villaseñor A, Sylvander M, Benahmed S, Beucler E, Cougoulat G, Delmas P, de Saint Blanquat M, Diaz J, Gallart J, Grimaud F, Lagabrielle Y, Manatschal G, Mocquet A, Pauchet H, Paul A, Péquegnat C, Quillard O, Roussel S, Ruiz M, Wolyniec D. 2014. High-resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments. J Geophys Res-Solid Earth, 119: 6399–6420

    Google Scholar 

  • Čížková H, Bina C R. 2013. Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback. Earth Planet Sci Lett, 379: 95–103

    Google Scholar 

  • Dahlen F A, Hung S H, Nolet G. 2000. Fréchet kernels for finite-frequency traveltimes-I. Theory. Geophys J Int, 141: 157–174

    Google Scholar 

  • Davis G A. 2003. The Yanshan belt of North China: Tectonics, adakitic magmatism, and crustal evolution. Earth Sci Front, 10: 373–384

    Google Scholar 

  • Davies J H. 2013. Global map of solid Earth surface heat flow. Geochem Geophys Geosyst, 14: 4608–4622

    Google Scholar 

  • Davis G A, Zheng Y, Wang C, Darby B J, Zhang C, Gehrels G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. In: Hendrix M S, Davis G A, eds. Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia. Mem Geol Soc Am, 194: 171–197

    Google Scholar 

  • Deng J F, Mo X X, Zhao H L, Luo Z H, Du Y S. 1994. Lithosphere root/derooting and activation of the east China continent (in Chinese). Geoscience, 8: 349–356

    Google Scholar 

  • Ekström G, Dziewonski A M. 1998. The unique anisotropy of the Pacific upper mantle. Nature, 394: 168–172

    Google Scholar 

  • Faure M, Lin W, Monié P, Le Breton N, Poussineau S, Panis D, Deloule E. 2003. Exhumation tectonics of the ultrahigh-pressure metamorphic rocks in the Qinling orogen in east China: New petrological-structuralradiometric insights from the Shandong Peninsula. Tectonics, 22: 1018

    Google Scholar 

  • Feng M, van der Lee S, An M J, Zhao Y. 2010. Lithospheric thickness, thinning, subduction, and interaction with the asthenosphere beneath China from the joint inversion of seismic S-wave train fits and Rayleigh- wave dispersion curves. Lithos, 120: 116–130

    Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897

    Google Scholar 

  • Gilder S A, Leloup P H, Courtillot V, Chen Y, Coe R S, Zhao X, Xiao W, Halim N, Cogné J P, Zhu R. 1999. Tectonic evolution of the Tancheng- Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data. J Geophys Res, 104: 15365–15390

    Google Scholar 

  • Goes S, Govers R, Vacher P. 2000. Shallow mantle temperatures under Europe from P and S wave tomography. J Geophys Res, 105: 11153–11169

    Google Scholar 

  • Griffin W L, Andi Z, O’Reilly S Y, Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. Mantle Dynamics and Plate Interactions in East Asia. 107–126

    Google Scholar 

  • Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities. Geophys J Int, 150: 321–361

    Google Scholar 

  • Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction zone geodynamics. Berlin: Springer. 175–205

    Google Scholar 

  • Hammond W C, Humphreys E D. 2000. Upper mantle seismic wave velocity: Effects of realistic partial melt geometries. J Geophys Res, 105: 10975–10986

    Google Scholar 

  • He L J, Hu S B, Wang J Y. 2001. The thermal structure features of lithosphere beneath eastern China (in Chinese). Prog Nat Sci, 11: 966–969

    Google Scholar 

  • Hieronymus C F, Shomali Z H, Pedersen L B. 2007. A dynamical model for generating sharp seismic velocity contrasts underneath continents: Application to the Sorgenfrei-Tornquist Zone. Earth Planet Sci Lett, 262: 77–91

    Google Scholar 

  • Hu S B, He L J, Wang J Y. 2000. Heat flow in the continental area of China: A new data set. Earth Planet Sci Lett, 179: 407–419

    Google Scholar 

  • Hu S B, He L J, Wang J Y. 2001. Compilation of heat flow data in the China continental area. Chin J Geophys, 44: 604–618

    Google Scholar 

  • Huang J L, Zhao D P. 2004. Crustal heterogeneity and seismotectonics of the region around Beijing, China. Tectonophysics, 385: 159–180

    Google Scholar 

  • Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 111: B09305

    Google Scholar 

  • Huang Z, Wang L, Zhao D, Mi N, Xu M. 2011. Seismic anisotropy and mantle dynamics beneath China. Earth Planet Sci Lett, 306: 105–117

    Google Scholar 

  • Hung S H, Dahlen F A, Nolet G. 2000. Fréchet kernels for finite-frequency traveltimes-II. Examples. Geophys J Int, 141: 175–203

    Google Scholar 

  • Hung S H, Shen Y, Chiao L Y. 2004. Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach. J Geophys Res, 109: B08305

    Google Scholar 

  • Jiang M M, Ai Y S, Chen L, Yang Y J. 2013. Local modification of the lithosphere beneath the central and western North China Craton: 3-D constraints from Rayleigh wave tomography. Gondwana Res, 24: 849–864

    Google Scholar 

  • Karato S I, Karki B B. 2001. Origin of lateral variation of seismic wave velocities and density in the deep mantle. J Geophys Res, 106: 21771–21783

    Google Scholar 

  • Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophys J Int, 105: 429–465

    Google Scholar 

  • Koulakov I, Kaban M K, Tesauro M, Cloetingh S. 2009. P-and S-velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data. Geophys J Int, 179: 345–366

    Google Scholar 

  • Kuritani T, Ohtani E, Kimura J I. 2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat Geosci, 4: 713–716

    Google Scholar 

  • Lebedev S, Nolet G. 2003. Upper mantle beneath Southeast Asia from S velocity tomography. J Geophys Res, 108: 2048

    Google Scholar 

  • Lei J. 2012. Upper-mantle tomography and dynamics beneath the North China Craton. J Geophys Res, 117: B06313

    Google Scholar 

  • Lei J, Xie F, Lan C, Xing C, Ma S. 2008. Seismic images under the Beijing region inferred from P and PmP data. Phys Earth Planet Inter, 168: 134–146

    Google Scholar 

  • Lei J, Xie F, Fan Q, Santosh M. 2013. Seismic imaging of the deep structure under the Chinese volcanoes: An overview. Phys Earth Planet Inter, 224: 104–123

    Google Scholar 

  • Lenardic A, Moresi L, Mühlhaus H. 2000. The role of mobile belts for the longevity of deep cratonic lithosphere: The Crumple Zone Model. Geophys Res Lett, 27: 1235–1238

    Google Scholar 

  • Lenardic A, Moresi L N, Mühlhaus H. 2003. Longevity and stability of cratonic lithosphere: Insights from numerical simulations of coupled mantle convection and continental tectonics. J Geophys Res, 108: 2303

    Google Scholar 

  • Li C, van der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res, 115: B07308

    Google Scholar 

  • Li C, van der Hilst R D, Engdahl E R, Burdick S. 2008. A new global model for P wave speed variations in Earth’s mantle. Geochem Geophys Geosyst, 9: Q05018

    Google Scholar 

  • Li C, van der Hilst R D, Toksöz M N. 2006. Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Phys Earth Planet Inter, 154: 180–195

    Google Scholar 

  • Li S G, Xiao Y L, Liou D L, Chen Y Z, Ge N J, Zhang Z Q, Sun S S, Cong B L, Zhang R Y, Hart S R, Wang S S. 1993. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes. Chem Geol, 109: 89–111

    Google Scholar 

  • Li H Y, Xu Y G, Huang X L, He B, Luo Z Y, Yan B. 2009. Activation of northern margin of the North China Craton in Late Paleozoic: Evidence from U-Pb dating and Hf isotopes of detrital zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu-Jingle basin. Chin Sci Bull, 54: 677–686

    Google Scholar 

  • Li Y, Yang Y. 2011. Gravity data inversion for the lithospheric density structure beneath North China Craton from EGM 2008 model. Phys Earth Planet Inter, 189: 9–26

    Google Scholar 

  • Li Y, Wu Q, Pan J, Zhang F, Yu D. 2013. An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography. Earth Planet Sci Lett, 377–378: 367–377

    Google Scholar 

  • Liang X, Shen Y, Chen Y J, Ren Y. 2011. Crustal and mantle velocity models of southern Tibet from finite frequency tomography. J Geophys Res, 116: B02408

    Google Scholar 

  • Liu D Y, Nutman A P, Compston W, Wu J S, Shen Q H. 1992. Remnants of =3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339–342

    Google Scholar 

  • Liu J, Xia Q K, Deloule E, Ingrin J, Chen H, Feng M. 2015. Water content and oxygen isotopic composition of alkali basalts from the Taihang Mountains, China: Recycled oceanic components in the mantle source. J Petrol, 56: 681–702

    Google Scholar 

  • Meyerholtz K A, Pavlis G L, Szpakowski S A. 1989. Convolutional quelling in seismic tomography. Geophysics, 54: 570–580

    Google Scholar 

  • Nolet G. 1985. Solving or resolving inadequate and noisy tomographic systems. J Comput Phys, 61: 463–482

    Google Scholar 

  • Obrebski M, Allen R M, Zhang F X, Pan J T, Wu Q J, Hung S H. 2012. Shear wave tomography of China using joint inversion of body and surface wave constraints. J Geophys Res, 117

    Google Scholar 

  • Paige C C, Saunders M A. 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw, 8: 43–71

    Google Scholar 

  • Pan G T, Mo X X, Hou Z Q, Zhu D C, Wang L Q, Li G M, Zhao Z D, Geng Q R, Liao Z L. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrol Sin, 22: 521–533

    Google Scholar 

  • Polet J, Anderson D L. 1995. Depth extent of cratons as inferred from tomographic studies. Geology, 23: 205–208

    Google Scholar 

  • Poudjom Djomani Y H, O’Reilly S Y, Griffin W L, Morgan P. 2001. The density structure of subcontinental lithosphere through time. Earth Planet Sci Lett, 184: 605–621

    Google Scholar 

  • Ren Y, Shen Y. 2008. Finite frequency tomography in southeastern Tibet: Evidence for the causal relationship between mantle lithosphere delamination and the north-south trending rifts. J Geophys Res, 113: 7

  • Ribe N M, Stutzmann E, Ren Y, van der Hilst R. 2007. Buckling instabilities of subducted lithosphere beneath the transition zone. Earth Planet Sci Lett, 254: 173–179

    Google Scholar 

  • Rocha M P, Schimmel M, Assumpção M. 2011. Upper-mantle seismic structure beneath SE and Central Brazil from P- and S-wave regional traveltime tomography. Geophys J Int, 184: 268–286

    Google Scholar 

  • Rychert C A, Fischer K M, Rondenay S. 2005. A sharp lithosphere-asthenosphere boundary imaged beneath eastern North America. Nature, 436: 542–545

    Google Scholar 

  • Sakamaki T, Suzuki A, Ohtani E, Terasaki H, Urakawa S, Katayama Y, Funakoshi K I, Wang Y, Hernlund J W, Ballmer M D. 2013. Ponded melt at the boundary between the lithosphere and asthenosphere. Nat Geosci, 6: 1041–1044

    Google Scholar 

  • Schmandt B, Humphreys E. 2010. Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth Planet Sci Lett, 297: 435–445

    Google Scholar 

  • Schmid C, Goes S, van der Lee S, Giardini D. 2002. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet Sci Lett, 204: 17–32

    Google Scholar 

  • Shen Z K, Zhao C, Yin A, Li Y, Jackson D D, Fang P, Dong D. 2000. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. J Geophys Res, 105: 5721–5734

    Google Scholar 

  • Sobolev S V, Zeyen H, Stoll G, Werling F, Altherr R, Fuchs K. 1995. Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Planet Sci Lett, 139: 147–163

    Google Scholar 

  • Sun Y S, Toksöz M N. 2006. Crustal structure of China and surrounding regions from P wave traveltime tomography. J Geophys Res, 111: B03310

    Google Scholar 

  • Sun Y S, Toksöz M N, Pei S P, Zhao D, Morgan F D, Rosca A. 2008a. S wave tomography of the crust and uppermost mantle in China. J Geophys Res, 113: B11307

    Google Scholar 

  • Sun Y S, Toksoz M N, Pei S P, Morgan F D. 2008b. The layered shearwave velocity structure of the crust and uppermost mantle in China. Bull Seismol Soc Am, 98: 746–755

    Google Scholar 

  • Tang Q, Chen L. 2008. Structure of the crust and uppermost mantle of the Yanshan Belt and adjacent regions at the northeastern boundary of the North China Craton from Rayleigh Wave Dispersion Analysis. Tectonophysics, 455: 43–52

    Google Scholar 

  • Tang Y J, Zhang H F, Ying J F. 2006. Asthenosphere-lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem Geol, 233: 309–327

    Google Scholar 

  • Tang Y J, Zhang H F, Ying J F, Su B X, Chu Z Y, Xiao Y, Zhao X M. 2013. Highly heterogeneous lithospheric mantle beneath the Central Zone of the North China Craton evolved from Archean mantle through diverse melt refertilization. Gondwana Res, 23: 130–140

    Google Scholar 

  • Tian Y, Zhao D. 2011. Destruction mechanism of the North China Craton: Insight from P and S wave mantle tomography. J Asian Earth Sci, 42: 1132–1145

    Google Scholar 

  • Tian Y, Zhao D P, Sun R M, Teng J W. 2009. Seismic imaging of the crust and upper mantle beneath the North China Craton. Phys Earth Planet Inter, 172: 169–182

    Google Scholar 

  • Van Decar J C, Crosson R S. 1990. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bull Seismol Soc of Amer, 80: 150–169

    Google Scholar 

  • Wang J, Wu H, Zhao D P. 2014. P wave radial anisotropy tomography of the upper mantle beneath the North China Craton. Geochem Geophys Geosyst, 15: 2195–2210

    Google Scholar 

  • Wang J Y, Huang S P, Chen M X. 1996. Terrestrial heat flux map (in Chinese). In: Yuan X C, ed. Geophysical Atlas in China. Beijing: Geophysical Publishing House. 102

    Google Scholar 

  • Wang M, Shen Z K, Niu Z J, Zhang Z S, Sun H R, Gan W J, Wang Q, Ren Q. 2003. Contemporary crustal deformation of the Chinese continent and tectonic blockmodel. Sci China Ser D-Earth Sci, 46: 25–32

    Google Scholar 

  • Wang N L, Yang J C, Xia Z K, Mo D W, Li Y L, Pan M. 1996. Cenozoic Sedimentary and Tectonic Features of Shanxi Garben (in Chinese). Beijing: Science Press

    Google Scholar 

  • Wang P, Xu M, Wang L, Mi N, Yu D, Li H, Li C, Bao X, Huang T, Huang H. 2013. Seismic evidence for the stratified lithosphere in the south of the North China Craton. J Geophys Res-Solid Earth, 118: 570–582

    Google Scholar 

  • Wang Q, Zhang P Z, Freymueller J T, Bilham R, Larson K M, Lai X, You X, Niu Z, Wu J, Li Y, Liu J, Yang Z, Chen Q. 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294: 574–577

    Google Scholar 

  • Wang X C, Wilde S A, Li Q L, Yang Y N. 2015. Continental flood basalts derived from the hydrous mantle transition zone. Nat Commun, 6: 7700

    Google Scholar 

  • Wang X L, Niu F L. 2011. Imaging the mantle transition zone beneath eastern and central China with CEArray receiver functions. Earthq Sci, 24: 65–75

    Google Scholar 

  • Wang Y. 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland: Constraints on active deformation. Phys Earth Planet Inter, 126: 121–146

    Google Scholar 

  • Wawerzinek B, Ritter J R R, Roy C. 2013. New constraints on the 3D shear wave velocity structure of the upper mantle underneath Southern Scandinavia revealed from non-linear tomography. Tectonophysics, 602: 38–54

    Google Scholar 

  • Wei W, Xu J, Zhao D, Shi Y. 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism. J Asian Earth Sci, 60: 88–103

    Google Scholar 

  • Wu F Y, Xu Y G, Gao S, Zheng J P. 2008. Lithoshperic thinning and destruction of the North China Craton (in Chinese with English abstract). Acta Petrol Sin 24: 1145–1174

    Google Scholar 

  • Wu F Y, Xu Y G, Zhu R X, Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci China Earth Sci, 57: 2878–2890

    Google Scholar 

  • Xiao W J, Windley B F, Hao J, Zhai M G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22: 1069

    Google Scholar 

  • Xiao W J, Windley B F, Yong Y, Yan Z, Yuan C, Liu C, Li J. 2009. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. J Asian Earth Sci, 35: 323–333

    Google Scholar 

  • Xu P, Liu F, Ye K, Wang Q, Cong B, Chen H. 2002. Flake tectonics in the Sulu orogen in eastern China as revealed by seismic tomography. Geophys Res Lett, 29: 23-1–23-4

    Google Scholar 

  • Xu P F, Zhao D P. 2009. Upper-mantle velocity structure beneath the North China Craton: Implications for lithospheric thinning. Geophys J Int, 177: 1279–1283

    Google Scholar 

  • Xu W W, Zheng T Y, Zhao L. 2011. Mantle dynamics of the reactivating North China Craton: Constraints from the topographies of the 410-km and 660-km discontinuities. Sci China Earth Sci, 54: 881–887

    Google Scholar 

  • Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 747–757

    Google Scholar 

  • Xu Y G. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin’anling-Taihangshan gravity lineament. Lithos, 96: 281–298

    Google Scholar 

  • Xu Y G, Blusztajn J, Ma J L, Suzuki K, Liu J F, Hart S R. 2008. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos, 102: 25–42

    Google Scholar 

  • Xu Y G, Chung S L, Ma J, Shi L. 2004. Contrasting Cenozoic lithospheric evolution and architecture in the western and eastern Sino-Korean Craton: Constraints from geochemistry of basalts and mantle xenoliths. J Geol, 112: 593–605

    Google Scholar 

  • Xu Y G, Ma J L, Frey F A, Feigenson M D, Liu J F. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem Geol, 224: 247–271

    Google Scholar 

  • Xu Y G, Li H Y, Pang C J, He B. 2009. On the timing and duration of the destruction of the North China Craton. Chin Sci Bull, 54: 3379

    Google Scholar 

  • Yang J, Zhao L, Kaus B J P, Lu G, Wang K, Zhu R. 2017. Slab-triggered wet upwellings produce large volumes of melt: Insights into the destruction of the North China Craton. Tectonophysics

    Google Scholar 

  • Yin A, Nie S Y. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A, Harrison M, eds. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press. 442–484

    Google Scholar 

  • Ying J, Zhang H, Kita N, Morishita Y, Shimoda G. 2006. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet Sci Lett, 244: 622–638

    Google Scholar 

  • Zhang H F. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Chin Sci Bull, 54: 3417–3437

    Google Scholar 

  • Zhang K J. 1997. North and South China collision along the eastern and southern North China margins. Tectonophysics, 270: 145–156

    Google Scholar 

  • Zhang M, Zhou X H, Zhang J B. 1998. Nature of the lithospheric mantle beneath NE China: Evidence from potassic volcanic rocks and mantle xenoliths. In: Griffin W L, Zhang A D, O’Reilly S Y, eds. Mantle Dynamics and Plate Interactions in East Asia. 197–219

    Google Scholar 

  • Zhang S H, Zhao Y, Davis G A, Ye H, Wu F. 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Sci Rev, 131: 49–87

    Google Scholar 

  • Zhang Y, Wang Y, Zhao L, Jin Z. 2016. On velocity anomalies beneath southeastern China: An investigation combining mineral physics studies and seismic tomography observations. Gondwana Res, 31: 200–217

    Google Scholar 

  • Zhang Y Q, Mercier J L, Vergély P. 1998. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia. Tectonophysics, 285: 41–75

    Google Scholar 

  • Zhang Y Q, Ma Y S, Yang N, Shi W, Dong S. 2003. Cenozoic extensional stress evolution in North China. J Geodyn, 36: 591–613

    Google Scholar 

  • Zhao D, Hasegawa A, Kanamori H. 1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. J Geophys Res, 99: 22313–22329

    Google Scholar 

  • Zhao D. 2007. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res, 12: 335–355

    Google Scholar 

  • Zhao D P, Isozaki Y, Maruyama S. 2017. Seismic imaging of the Asian orogens and subduction zones. J Asian Earth Sci, 145: 349–367

    Google Scholar 

  • Zhao D P, Lei J S, Tang R. 2004. Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography. Chin Sci Bull, 49: 1401–1408

    Google Scholar 

  • Zhao G, Wilde S A, Cawood P A, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73

    Google Scholar 

  • Zhao G C, Sun M, Wilde S A. 2003. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Sci China Ser DEarth Sci, 46: 23–38

    Google Scholar 

  • Zhao L, Allen R M, Zheng T, Hung S H. 2009. Reactivation of an Archean craton: Constraints from P-and S-wave tomography in North China. Geophys Res Lett, 36: L17306

    Google Scholar 

  • Zhao L, Allen R M, Zheng T, Zhu R. 2012. High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas. Geochem Geophys Geosyst, 13: Q06007

    Google Scholar 

  • Zhao L, Paul A, Malusà M G, Xu X, Zheng T, Solarino S, Guillot S, Schwartz S, Dumont T, Salimbeni S, Aubert C, Pondrelli S, Wang Q, Zhu R. 2016. Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J Geophys Res-Solid Earth, 121: 8720–8737

    Google Scholar 

  • Zhao L, Xu X, Malusà M G. 2017. Seismic probing of continental subduction zones. J Asian Earth Sci, 145: 37–45

    Google Scholar 

  • Zhao L, Xue M. 2010. Mantle flow pattern and geodynamic cause of the North China Craton reactivation: Evidence from seismic anisotropy. Geochem Geophys Geosyst, 11: Q07010

    Google Scholar 

  • Zhao L, Zheng T, Lu G, Ai Y. 2011. No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia collision: Constraints from new SKS wave splitting measurements. Geophys J Int, 187: 1027–1037

    Google Scholar 

  • Zhao X M, Zhang H F, Su F, Hu Z C, Lo C H, Wang Y, Yang S H, Guo J H. 2013. Phlogopite 40Ar/39Ar geochronology of mantle xenoliths from the North China Craton: Constraints on the eruption ages of Cenozoic basalts. Gondwana Res, 23: 208–219

    Google Scholar 

  • Zhao Y, Chen B, Zhang S H, Liu J M, Hu J M, Liu J, Pei J L. 2010. Pre-Yanshanian geological events in the northern margin of the North China Craton and its adjacent areas (in Chinese). Geol China, 37: 900–915

    Google Scholar 

  • Zheng J, O’Reilly S Y, Griffin W L, Lu F, Zhang M, Pearson N J. 2001. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution. Lithos, 57: 43–66

    Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 71: 5203–5225

    Google Scholar 

  • Zheng T Y, Duan Y H, Xu W W, Ai Y S, Chen L, Zhao L, Zhang Y Y, Xu X B. 2017. Seismic velocity models of the crust-upper mantle beneath North China, v2.0. https://doi.org/www.craton.cn/data

    Google Scholar 

  • Zheng T Y, Zhao L, Xu W W, Zhu R X. 2008. Insight into modification of North China Craton from seismological study in the Shandong Province. Geophys Res Lett, 35: L22305

    Google Scholar 

  • Zheng X F, Yao Z X, Liang J H, Zheng J. 2010. The role played and opportunities provided by IGP DMC of China National seismic network in Wenchuan Earthquake disaster relief and researches. Bull Seismol Soc Am, 100: 2866–2872

    Google Scholar 

  • Zhu G, Wang Y, Liu G, Niu M, Xie C, Li C. 2005. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. J Struct Geol, 27: 1379–1398

    Google Scholar 

  • Zhu G, Liu G S, Niu M L, Xie C L, Wang Y S, Xiang B. 2009. Syncollisional transform faulting of the Tan-Lu fault zone, East China. Int J Earth Sci-Geol Rundsch, 98: 135–155

    Google Scholar 

  • Zhu G, Jiang D, Zhang B, Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res, 22: 86–103

    Google Scholar 

  • Zhu R X, Fan H R, Li J W, Meng Q R, Li S R, Zeng Q D. 2015. Decratonic gold deposits. Sci China Earth Sci, 58: 1523–1537

    Google Scholar 

  • Zhu R X, Yang J H, Wu F Y. 2012a. Timing of destruction of the North China Craton. Lithos, 149: 51–60

    Google Scholar 

  • Zhu R X, Zhang H, Zhu G, Meng Q, Fan H, Yang J, Wu F, Zhang Z, Zheng T. 2017. Craton destruction and related resources. Int J Earth Sci-Geol Rundsch, 106: 2233–2257

    Google Scholar 

  • Zhu R X, Zheng T Y. 2009. Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics. Chin Sci Bull, 54: 3354–3366

    Google Scholar 

  • Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012b. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Xiufen Zheng from Institute of Geophysics, China Earthquake Administration, and colleagues from the Seismological Laboratory of the Institute of Geology and Geophysics, Chinese Academy of Sciences, and colleagues from Peking University for their hard work of data collection. We thank Dr. Huaiyu Yuan, Xiaofeng Liang and Fengxue Zhang for their helpful suggestions. We are grateful to Yaoyang Zhang for providing the latest data of the LAB interface depth. We appreciate Editorial Board and three anonymous reviewers for their constructive comments and suggestions. Waveform data are provided by Seisimological Laboratory, IGGCAS and Data Management Centre of China National Seismic Network at Institute of Geophysics, Chinese Earthquake Administration. This research was supported by National Key Research and Development Program of China (Grant No. 2017YFC0601206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhao, L., Wang, K. et al. Indication from finite-frequency tomography beneath the North China Craton: The heterogeneity of craton destruction. Sci. China Earth Sci. 61, 1238–1260 (2018). https://doi.org/10.1007/s11430-017-9201-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9201-y

Keywords

Navigation