Skip to main content
Log in

Induced earthquakes in the development of unconventional energy resources

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

It has long been known that human activities such as waste fluid disposal and reservoir impoundment may cause earthquakes. Recently, anthropogenic activities to tackle the increasing energy demand and to address climate change issues are also reported to induce earthquakes. These activities have a common attribute in that fluids are injected and extracted underground and induce spatiotemporal changes of pore pressure and stress, which may cause slip on faults. Induced earthquakes not only pose significant impacts on seismic hazard assessment and preparation, but also raise the question to the society as how to balance the economic needs of resources development and the public’s concerns about potential environmental impacts. Here we review the observations of fluid-injection/extraction induced earthquakes, ground deformation associated with these activities, and their physical mechanisms. Furthermore, we discuss the influences of induced earthquakes on seismic hazard models, regulatory policies on these anthropogenic activities, and current development of academic, industrial and government initiatives and collaborations in order to understand this intriguing phenomenon and address associated challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelung F, Galloway D L, Bell J W, Zebker H A, Laczniak R J. 1999. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27: 483

    Article  Google Scholar 

  • Ampuero J P, Galis M, Mai P M. 2016. Physics-based estimates of maximum magnitude of induced earthquakes. Geophys Res Abstracts, 18: EGU2016-9371, EGU General Assembly

    Google Scholar 

  • Atkinson G M, Eaton D W, Ghofrani H, Walker D, Cheadle B, Schultz R, Shcherbakov R, Tiampo K, Gu J, Harrington R M, Liu Y, van der Baan M, Kao H. 2016. Hydraulic fracturing and seismicity in the western Canada sedimentary basin. Seismol Res Lett, 87: 631–647

    Article  Google Scholar 

  • Bao X, Eaton D W. 2016. Fault activation by hydraulic fracturing in western Canada. Science, 354: 1406–1409

    Article  Google Scholar 

  • Mahani A B, Schultz R, Kao H, Walker D, Johnson J, Salas C. 2017. Fluid Injection and Seismic Activity in the Northern Montney Play, British Columbia, Canada, with Special Reference to the 17 August 2015 M w 4.6 Induced Earthquake. Bull Seismol Soc Am, 107: 542–552

    Article  Google Scholar 

  • Bachmann C E, Wiemer S, Woessner J, Hainzl S. 2011. Statistical analysis of the induced Basel 2006 earthquake sequence: Introducing a probabilitybased monitoring approach for Enhanced Geothermal Systems. Geophys J Int, 186: 793–807

    Article  Google Scholar 

  • Bachmann C E, Wiemer S, Goertz-Allmann B P, Woessner J. 2012. Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys Res Lett, 39: L09302

    Article  Google Scholar 

  • Barbour A J, Evans E L, Hickman S H, Eneva M. 2016. Subsidence rates at the southern Salton Sea consistent with reservoir depletion. J Geophys Res-Solid Earth, 121: 5308–5327

    Article  Google Scholar 

  • Barnhart W D, Benz H M, Hayes G P, Rubinstein J L, Bergman E. 2014. Seismological and geodetic constraints on the 2011M w 5.3 Trinidad, Colorado earthquake and induced deformation in the Raton Basin. J Geophys Res-Solid Earth, 119: 7923–7933

    Article  Google Scholar 

  • Barnhart W D, Yeck W L. 2017. InSAR constraints on recent induced earthquakes in the United States. Seismological Society of America Annual Meeting, 18–20

    Google Scholar 

  • April, Denver, Colorado Bommer J J, Oates S, Cepeda J M, Lindholm C, Bird J, Torres R, Marroquín G, Rivas J. 2006. Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Eng Geol, 83: 287–306

    Article  Google Scholar 

  • British Colombia Oil and Gas Commission (BCOGC). 2012. Investigation of Observed Seismicity in the Horn River Basin. British Colombia Oil and Gas Commission Report. 29

    Google Scholar 

  • British Colombia Oil and Gas Commission (BCOGC). 2015. August Seismic Event Determination. Industry Bulletin 2015-32, https://www.bcogc.da

    Google Scholar 

  • Brodsky E E, Lajoie L J. 2013. Anthropogenic seismicity rates and operational parameters at the Salton Sea geothermal field. Science, 341: 543–546

    Article  Google Scholar 

  • Bürgmann R, Rosen P A, Fielding E J. 2000. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci, 28: 169–209

    Article  Google Scholar 

  • Carnec C, Massonnet D, King C. 1996. Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophys Res Lett, 23: 3579–3582

    Article  Google Scholar 

  • Caine J S, Evans J P, Forster C B. 1996. Fault zone architecture and permeability structure. Geology, 24: 1025–1028

    Article  Google Scholar 

  • Chang K W, Segall P. 2016. Injection-induced seismicity on basement faults including poroelastic stressing. J Geophys Res-Solid Earth, 121: 2708–2726

    Article  Google Scholar 

  • Chester F M, Evans J P, Biegel R L. 1993. Internal structure and weakening mechanisms of the San Andreas Fault. J Geophys Res, 98: 771–786

    Article  Google Scholar 

  • Clerc F, Harrington R M, Liu Y, Gu Y J. 2016. Stress drop estimates and hypocenter relocations of induced seismicity near Crooked Lake, Alberta. Geophys Res Lett, 43: 6942–6951

    Article  Google Scholar 

  • Cornet F H. 2016. Seismic and aseismic motions generated by fluid injections. Geomechanics Energ Environ, 5: 42–54

    Article  Google Scholar 

  • Deng K, Liu Y, Harrington R M. 2016. Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence. Geophys Res Lett, 43: 8482–8491

    Article  Google Scholar 

  • Dieterich J H, Richards‐Dinger K B, Kroll K A. 2015. Modeling injection-induced seismicity with the physics-based earthquake simulator RSQSim. Seismol Res Lett, 86: 1102–1109

    Article  Google Scholar 

  • Ellsworth W L. 2013. Injection-induced earthquakes. Science, 341: 1225942

    Article  Google Scholar 

  • Evans D M. 1966. The Denver area earthquakes and the Rocky Mountain Arsenal disposal well. Mountain Geologist, 3: 23–26

    Google Scholar 

  • Eto T, Asanuma H, Adachi M, Saeki K, Aoyama K, Ozeki H, Mukuhira Y, Häring M 2013. Application of the ETAS seismostatistical model to microseismicity from geothermal fields. GRC Transactions, 37: 149–154

    Google Scholar 

  • Fielding E J, Blom R G, Goldstein R M. 1998. Rapid subsidence over oil fields measured by SAR interferometry. Geophys Res Lett, 25: 3215–3218

    Article  Google Scholar 

  • Fielding E J, Sangha S S, Bekaert D P S, Samsonov S V, Chang J C. 2017. Surface deformation of north-central Oklahoma related to the 2016 M w 5.8 Pawnee Earthquake from SAR interferometry time series. Seismol Res Lett, 88, doi: 10.1785/0220170010

    Google Scholar 

  • Fisher M K, Heinze J R, Harris C D, Davidson B M, Wright C A, Dunn K P. 2004. Optimizing horizontal completion techniques in the Barnett Shale using microseismic fracture mapping: Proceedings of the Society of Petroleum Engineers Annual Technical Conference, Houston, Texas. SPE Paper 90051, 11

    Book  Google Scholar 

  • Friberg P A, Besana-Ostman G M, Dricker I. 2014. Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County, Ohio. Seismol Res Lett, 85: 1295–1307

    Article  Google Scholar 

  • Frohlich C. 2012. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas. Proc Natl Acad Sci USA, 109: 13934–13938

    Article  Google Scholar 

  • Galloway D L, Hudnut K W, Ingebritsen S E, Phillips S P, Peltzer G, Rogez F, Rosen P A. 1998. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res, 34: 2573–2585

    Article  Google Scholar 

  • Gan W, Frohlich C. 2013. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas. Proc Natl Acad Sci USA, 110: 18786–18791

    Article  Google Scholar 

  • Giardini D. 2009. Geothermal quake risks must be faced. Nature, 462: 848–849

    Article  Google Scholar 

  • Goertz-Allmann B P, Goertz A, Wiemer S. 2011. Stress drop variations of induced earthquakes at the Basel geothermal site. Geophys Res Lett, 38: L09308

    Article  Google Scholar 

  • Grandin R, Vallee M, Lacassin R. 2017. Rupture process of the Oklahoma M w5.7 Pawnee earthquake from Sentinel-1 InSAR and seismological data. Seismol Res Lett, 88, doi: 10.1785/0220160226

    Google Scholar 

  • Granda J, Indreiten T, Sviland K M, Savage M, Arnaud A, Cooksley G, Bisects E. 2012. Ground motion monitoring with radar technology—Case study of SAGD operations of Leismer: Results of ground motion monitoring during first year of steam injection and preliminary comparison with reservoir performance data. World Heavy Oil Congress, WHOC12-211, Aberdeen, Scotland

    Google Scholar 

  • Grigoli F, Cesca S, Priolo E, Rinaldi A P, Clinton J F, Stabile T A, Dost B, Fernandez M G, Wiemer S, Dahm T. 2017. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Rev Geophys, doi: 10.1002/2016RG000542

    Google Scholar 

  • Guglielmi Y, Elsworth D, Cappa F, Henry P, Gout C, Dick P, Durand J. 2015a. In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales. J Geophys Res-Solid Earth, 120: 7729–7748

    Article  Google Scholar 

  • Guglielmi Y, Cappa F, Avouac J P, Henry P, Elsworth D. 2015b. Seismicity triggered by fluid injection-induced aseismic slip. Science, 348: 1224–1226

    Article  Google Scholar 

  • Guilhem A, Hutchings L, Dreger D S, Johnson L R. 2014. Moment tensor inversions of M ~ 3 earthquakes in the Geysers geothermal fields, California. J Geophys Res-Solid Earth, 119: 2121–2137

    Article  Google Scholar 

  • Gupta A, Baker J W. 2015. A Bayesian change point model to detect changes in event occurrence rates, with application to induced seismicity. ICASP12-12th International Conference on Applications of Statistics and Probability in Civil Engineering, Vancouver, Canada, 12‒15 July 2015

    Google Scholar 

  • Hainzl S, Ogata Y. 2005. Detecting fluid signals in seismicity data through statistical earthquake modeling. J Geophys Res, 110: B05S07

    Article  Google Scholar 

  • Hainzl S, Fischer T, Čermáková H, Bachura M, Vlček J. 2016. Aftershocks triggered by fluid intrusion: Evidence for the aftershock sequence occurred 2014 in West Bohemia/Vogtland. J Geophys Res-Solid Earth, 121: 2575–2590

    Article  Google Scholar 

  • Häring M O, Schanz U, Ladner F, Dyer B C. 2008. Characterisation of the Basel 1 enhanced geothermal system. Geothermics, 37: 469–495

    Article  Google Scholar 

  • Harris R A. 1998. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. J Geophys Res, 103: 24347–24358

    Article  Google Scholar 

  • Haynes M, Capes R, Lawrence G, Smith A, Shilston D, Nicholls G. 1997. Major urban subsidence mapped by differential SAR Interferometry. Proc. Third ERS Symp. Space Serv. Environ., Florence, Italy, 17–21 March, (ESA SP-414), 1: 573–577

    Google Scholar 

  • Healy J H, Rubey W W, Griggs D T, Raleigh C B. 1968. The Denver earthquakes. Science, 161: 1301–1310

    Article  Google Scholar 

  • Hough S E. 2014. Shaking from injection-induced earthquakes in the central and eastern United States. Bull Seismological Soc Am, 104: 2619–2626

    Article  Google Scholar 

  • Hubbert M K, Rubey W W. 1959. Role of fluid pressure in mechanics of overthrust faulting: 1. Mechanics of fluid-filled porous solids and its application to overthrust faulting, porous solids and its application to overthrust faulting. Geol Soc Am Bull, 70: 115–166

    Article  Google Scholar 

  • Imoto M. 2001. Point process modelling of reservoir-induced seismicity. J Appl Probab, 38A: 232–242, doi: 10.1239/jap/1085496605

    Article  Google Scholar 

  • IPCC. 2005. Underground geological storage. In: Metz B, Davidson O, de Coninck H C, Loos M, Meyer L, ed. IPCC Special Report on Carbon Dioxide Capture and Storage. 195–276. Cambridge: Cambridge University Press

    Google Scholar 

  • Julian B R, Miller A D, Foulger G R. 1998. Non-double-couple earthquakes 1. Theory. Rev Geophys, 36: 525–549

    Article  Google Scholar 

  • Kao H, Eaton D W, Atkinson G M, Maxwell S, Mahani A B. 2016. Technical meeting on the traffic light protocol (TLP) for induced seismicity: Summary and recommendations. Geological Survey of Canada, Open File 8075, doi: 10.4095/299002

    Google Scholar 

  • Keranen K M, Savage H M, Abers G A, Cochran E S. 2013. Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 M w 5.7 earthquake sequence. Geology, 41: 699–702

    Article  Google Scholar 

  • Keranen K M, Weingarten M, Abers G A, Bekins B A, Ge S. 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345: 448–451

    Article  Google Scholar 

  • Kostrov B V. 1974. Seismic moment and energy of earthquakes, and seismic flow of rock. U.S.S.R. Academy of Sciences Izvestiya Phys Solid Earth, 1: 23–44

    Google Scholar 

  • Kumazawa T, Ogata Y. 2014. Nonstationary ETAS models for nonstandard earthquakes. Ann Appl Stat, 8: 1825–1852

    Article  Google Scholar 

  • Kumazawa T, Ogata Y, Kimura K, Maeda K, Kobayashi A. 2016. Background rates of swarm earthquakes that are synchronized with volumetric strain changes. Earth Planet Sci Lett, 442: 51–60

    Article  Google Scholar 

  • Lei X, Ma S, Chen W, Pang C, Zeng J, Jiang B. 2013. A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan Basin, China. J Geophys Res-Solid Earth, 118: 4296–4311

    Article  Google Scholar 

  • Li Y G, Leary P, Aki K, Malin P. 1990. Seismic trapped modes in the Oroville and San Andreas fault zones. Science, 249: 763–766

    Article  Google Scholar 

  • Liu Y, Xu L, Yang D. 2011. Pore pressure diffusion characteristics of Longtan reservoir-induced-earthquake (in Chinese). Chin J Geophys, 54: 1028–1037, doi: 10.3969/j.issn.0001-5733.2011.04.017

    Google Scholar 

  • Llenos A L, Michael A J. 2013. Modeling earthquake rate changes in Oklahoma and Arkansas: Possible signatures of induced seismicity. Bull Seismol Soc Am, 103: 2850–2861

    Article  Google Scholar 

  • Llenos A L, Michael A J. 2016. Characterizing potentially induced earthquake rate changes in the Brawley seismic zone, southern California. Bull Seismol Soc Am, 106: 2045–2062

    Article  Google Scholar 

  • Massonnet D, Holzer T, Vadon H. 1997. Land subsidence caused by the East Mesa Geothermal Field, California, observed using SAR interferometry. Geophys Res Lett, 24: 901–904

    Article  Google Scholar 

  • Massonnet D, Feigl K L. 1998. Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys, 36: 441–500

    Article  Google Scholar 

  • Michelet S, Toksöz M N. 2007. Fracture mapping in the Soultz-sous-Forêts geothermal field using microearthquake locations. J Geophys Res, 112: B07315

    Article  Google Scholar 

  • McGarr A. 2014. Maximum magnitude earthquakes induced by fluid injection. J Geophys Res-Solid Earth, 119: 1008–1019

    Article  Google Scholar 

  • McGarr A, Bekins B, Burkardt N, Dewey J, Earle P, Ellsworth W, Ge S, Hickman S, Holland A, Majer E, Rubinstein J, Sheehan A. 2015. Coping with earthquakes induced by fluid injection. Science, 347: 830–831

    Article  Google Scholar 

  • McGarr A, Simpson D, Seeber L. 2002. Case histories of induced and triggered seismicity. In: Lee W H K, Kanamori H, Jenning P C, Kisslinger C, eds. International Handbook of Earthquake and Engineering Seismology, Part A. 647–661

    Chapter  Google Scholar 

  • McNamara D E, Benz H M, Herrmann R B, Bergman E A, Earle P, Holland A, Baldwin R, Gassner A. 2015. Earthquake hypocenters and focal mechanisms in central Oklahoma reveal a complex system of reactivated subsurface strike-slip faulting. Geophys Res Lett, 42: 2742–2749

    Article  Google Scholar 

  • Nicholson C, Wesson R L. 1992. Triggered earthquakes and deep well activities. PAGEOPH, 139: 561–578

    Article  Google Scholar 

  • Ogata Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes. J Am Statistical Association, 83: 9–27

    Article  Google Scholar 

  • Ogata Y. 1998. Space-time point-process models for earthquake occurrences. Ann Institute Statistical Math, 50: 379–402

    Article  Google Scholar 

  • Ogata Y, Katsura K, Tanemura M. 2003. Modelling heterogeneous spacetime occurrences of earthquakes and its residual analysis. Applied Statistics (JRSSC), 52(Part4): 499–509

    Google Scholar 

  • Ogata Y, Zhuang J. 2006. Space–time ETAS models and an improved extension. Tectonophysics, 413: 13–23

    Article  Google Scholar 

  • Omori F. 1894. On the aftershocks of earthquakes. J College of Science, Imperial University of Tokyo, 7: 111–200

    Google Scholar 

  • Petersen M D, Mueller C S, Moschetti M P, Hoover S M, Rubinstein J L, Llenos A L, Michael A J, Ellsworth W L, McGarr A F, Holland A A, Anderson J. G. 2015. Incorporating Induced Seismicity in the 2014 United States National Seismic Hazard Model—Results of the 2014 Workshop and Sensitivity Studies. USGS Open-File Report 2015–1070 (https://dx.doi.org/10.3133/ofr20151070)

    Book  Google Scholar 

  • Petersen M D, Mueller C S, Moschetti M P, Hoover S M, Llenos A L, Ellsworth W L, Michael A J, Rubinstein J L, McGarr A F, Rukstales K S. 2016. Seismic-hazard forecast for 2016 including induced and natural earthquakes in the central and eastern United States. Seismol Res Lett, 87: 1327–1341

    Article  Google Scholar 

  • Pollitz F F, Wicks C, Schoenball M, Ellsworth W, Murry M. 2017. Geodetic slip model of the 3 September 2016 M w5.8 Pawnee, Oklahoma, earthquake: Evidence for fault-zone collapse. Seismol Res Lett, 88, doi: 10.1785/0220170002

    Google Scholar 

  • Priolo E, Romanelli M, Plasencia Linares M P, Garbin M, Peruzza L, Romano M A, Marotta P, Bernardi P, Moratto L, Zuliani D, Fabris P. 2015. Seismic monitoring of an underground natural gas storage facility: The Collalto seismic network. Seismol Res Lett, 86: 109–123

    Article  Google Scholar 

  • Raleigh C B, Healy J H, Bredehoeft J D. 1976. An experiment in earthquake control at rangely, Colorado. Science, 191: 1230–1237

    Article  Google Scholar 

  • Rosen P A, Hensley S, Joughin I R, Li F K, Madsen S N, Rodriguez E, Goldstein R M. 2000. Synthetic aperture radar interferometry. Proc IEEE, 88: 333–382

    Article  Google Scholar 

  • Rudnicki J W. 1986. Fluid mass sources and point forces in linear elastic diffusive solids. Mech Mater, 5: 383–393

    Article  Google Scholar 

  • Samsonov S, Czarnogorska M, White D. 2015. Satellite interferometry for high-precision detection of ground deformation at a carbon dioxide storage site. Int J Greenhouse Gas Control, 42: 188–199

    Article  Google Scholar 

  • Segall P. 1989. Earthquakes triggered by fluid extraction. Geology, 17: 942–946

    Article  Google Scholar 

  • Segall P, Lu S. 2015. Injection-induced seismicity: Poroelastic and earthquake nucleation effects. J Geophys-Res Solid Earth, 120: 5082–5103

    Article  Google Scholar 

  • Schultz R, Stern V, Gu Y J. 2014. An investigation of seismicity clustered near the Cordel Field, west central Alberta, and its relation to a nearby disposal well. J Geophys-Res Solid Earth, 119: 3410–3423

    Article  Google Scholar 

  • Schultz R, Stern V, Novakovic M, Atkinson G, Gu Y J. 2015. Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks. Geophys Res Lett, 42: 2750–2758

    Article  Google Scholar 

  • Schultz R, Wang R, Gu Y J, Haug K, Atkinson G. 2017. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta. J Geophys Res-Solid Earth, 122: 492–505

    Article  Google Scholar 

  • Shapiro S A, Dinske C. 2009. Scaling of seismicity induced by nonlinear fluid-rock interaction. J Geophys Res, 114: B09307

    Article  Google Scholar 

  • Shapiro S A, Dinske C, Kummerow J. 2007. Probability of a given-magnitude earthquake induced by a fluid injection. Geophys Res Lett, 34: L22314

    Article  Google Scholar 

  • Shapiro S A, Dinske C, Langenbruch C, Wenzel F. 2010. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations. Leading Edge, 29: 304–309

    Article  Google Scholar 

  • Shirzaei M, Ellsworth W L, Tiampo K F, González P J, Manga M. 2016. Surface uplift and time-dependent seismic hazard due to fluid injection in eastern Texas. Science, 353: 1416–1419

    Article  Google Scholar 

  • Skoumal R J, Brudzinski M R, Currie B S. 2015. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio. Bull Seismol Soc Am, 105: 189–197

    Article  Google Scholar 

  • Steacy S, Gomberg J, Cocco M. 2005. Introduction to special section: Stress transfer, earthquake triggering, and time-dependent seismic hazard. J Geophys Res, 110: B05S01

    Google Scholar 

  • Suckale J. 2009. Induced seismicity in hydrocarbon fields. Adv Geophys, 51: 55–106, doi: 10.1016/S0065-2687(09)05107-3

    Article  Google Scholar 

  • Sumy D F, Cochran E S, Keranen K M, Wei M, Abers G A. 2014. Observations of static Coulomb stress triggering of the November 2011M 5.7 Oklahoma earthquake sequence. J Geophys Res-Solid Earth, 119: 1904–1923

    Article  Google Scholar 

  • Talwani P. 1997. On the nature of reservoir-induced seismicity. Pure appl geophys, 150: 473–492

    Article  Google Scholar 

  • Utsu T. 1970. Aftershock and earthquake statistics (ii): Further investigation of aftershocks and other earthquake sequences based on a new classi cation of earthquake sequences. J Faculty Sci Hokkaido Univ Ser VII Geophys, 3: 197–266

    Google Scholar 

  • van der Elst N J, Page M T, Weiser D A, Goebel T H W, Hosseini S M. 2016. Induced earthquake magnitudes are as large as (statistically) expected. J Geophys Res-Solid Earth, 121: 4575–4590

    Article  Google Scholar 

  • Walsh F R, Zoback M D. 2016. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: Application to north-central Oklahoma, USA. Geology, 44: 991–994

    Article  Google Scholar 

  • Wang B, Ge H, Yang W, Wang W, Wang B, Wu G, Su Y. 2012. Transmitting seismic station monitors fault zone at depth. Eos Trans Am Geophys Union, 93: 49–50

    Article  Google Scholar 

  • Wang B, Harrington R M, Liu Y, Yu H, Carey A, van der Elst N J. 2015. Isolated cases of remote dynamic triggering in Canada detected using cataloged earthquakes combined with a matched-filter approach. Geophys Res Lett, 42: 5187–5196

    Article  Google Scholar 

  • Wang D, Li Y, Nie Z, Wang T, Qiao X, Li J, Yu P, Cheng R. 2016. Study on the cap rock deformation of Hutubi underground gas storage by GPS. Earthq Res China, 32: 397–406

    Google Scholar 

  • Wang P, Small M J, Harbert W, Pozzi M. 2016. A bayesian approach for assessing seismic transitions associated with wastewater injections. Bull Seismological Soc Am, 106: 832–845

    Article  Google Scholar 

  • Wang R, Gu Y J, Schultz R, Zhang M, Kim A. 2017. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake, Alberta. Geophys J Int, doi: 10.1093/gji/g9x204

    Google Scholar 

  • Weingarten M, Ge S, Godt J W, Bekins B A, Rubinstein J L. 2015. High-rate injection is associated with the increase in U.S. mid-continent seismicity. Science, 348: 1336–1340

    Article  Google Scholar 

  • Weng H, Yang H, Zhang Z, Chen X. 2016. Earthquake rupture extents and coseismic slips promoted by damaged fault zones. J Geophys Res-Solid Earth, 121: 4446–4457

    Article  Google Scholar 

  • Wibberley C A J, Yielding G, Di Toro G. 2008. Recent advances in the understanding of fault zone internal structure: A review. Geol Soc London Spec Publ, 299: 5–33

    Article  Google Scholar 

  • Wong I, Nemser E, Bott J, Dober M. 2015. White Paper Induced Seismicity and Traffic Light Systems as Related to Hydraulic Fracturing in Ohio. Ohio Oil and Gas Association (http://www.ooga.org/resource/resmgr/Files/OOGA_IS_TLS_White_Paper_fina.pdf)

    Google Scholar 

  • Yang H, Zhu L, Chu R. 2009. Fault-plane determination of the 18 April 2008 Mount Carmel, Illinois, earthquake by detecting and relocating aftershocks. Bull Seismol Soc Am, 99: 3413–3420

    Article  Google Scholar 

  • Yang H. 2010. Study of earthquake fault zone structures by aftershock location and high-frequency waveform modelling. Doctoral Dissertation. Saint Louis: Saint Louis University

    Google Scholar 

  • Yang H. 2015. Recent advances in imaging crustal fault zones: A review. Earthq Sci, 28: 151–162

    Article  Google Scholar 

  • Yang H, Zhu L. 2010. Shallow low-velocity zone of the San Jacinto fault from local earthquake waveform modelling. Geophys J Int, 183: 421–432

    Article  Google Scholar 

  • Yang H, Zhu L, Cochran E S. 2011. Seismic structures of the Calico fault zone inferred from local earthquake travel time modelling. Geophys J Int, 186: 760–770

    Article  Google Scholar 

  • Yang H, Li Z, Peng Z, Ben-Zion Y, Vernon F. 2014. Low-velocity zones along the San Jacinto Fault, Southern California, from body waves recorded in dense linear arrays. J Geophys Res-Solid Earth, 119: 8976–8990

    Article  Google Scholar 

  • Yang H, Lin J, Yin J, Yao H. 2015. Tectonic settings of the 2015 M w 8.3 Coquimbo, Chile earthquake and its implications on megathrust earthquakes (in Chinese). Chin Sci Bull, 60: 3549–3556, doi: 10.1360/N972015-01110

    Google Scholar 

  • Yeck W L, Hayes G P, McNamara D E, Rubinstein J L, Barnhart W D, Earle P S, Benz H M. 2017. Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts. Geophys Res Lett, 44: 711–717

    Article  Google Scholar 

  • Yin J X, Yang H F, Yao H J, Weng H H. 2016. Coseismic radiation and stress drop during the 2015 M w 8.3 Illapel, Chile megathrust earthquake. Geophys Res Lett, 43: 1520–1528

    Article  Google Scholar 

  • Yin J X, Yao H J, Yang H F, Liu J, Qin W Z, Zhang H J. 2017. Frequencydependent rupture process, stress change, and seismogenic mechanism of the 25 April 2015 Nepal Gorkha M w 7.8 earthquake. Sci China Earth Sci, 60: 796–808

    Article  Google Scholar 

  • Yue H, Lay T. 2011. Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (M w 9.1). Geophys Res Lett, 38: L00G09

    Article  Google Scholar 

  • Zaliapin I, Ben-Zion Y. 2016. Discriminating characteristics of tectonic and human-induced seismicity. Bull Seismol Soc Am, 106: 846–859

    Article  Google Scholar 

  • Zhang B, Wang B, Yang H, Ji Z, Hou J, Li L. 2017. Seismicity around the Hutubi underground gas storage, Xinjiang, China. SEG Workshop on Microseismic Technologies and Applications, Hefei, China

    Google Scholar 

  • Zhang H, Eaton D W, Li G, Liu Y, Harrington R M. 2016. Discriminating induced seismicity from natural earthquakes using moment tensors and source spectra. J Geophys Res-Solid Earth, 121: 972–993

    Article  Google Scholar 

  • Zoback M D, Gorelick S M. 2012. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci USA, 109: 10164–10168

    Article  Google Scholar 

  • Zhuang J, Ogata Y, Vere-Jones D. 2002. Stochastic declustering of spacetime earthquake occurrences. J Am Statistical Association, 97: 369–380

    Article  Google Scholar 

  • Zhuang J. 2011. Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth Planet Space, 63: 207–216

    Article  Google Scholar 

Download references

Acknowledgements

We thank Teng-fong Wong and Lin Liu at Chinese University of Hong Kong, Baoshan Wang at Institute of Geophysics, China Earthquake Administration (CEA), Xuejun Qiao at Institute of Seismology, CEA, and Risheng Chu at Institute of Geodesy and Geophysics, Chinese Academy of Science, for the discussion in the early stage of this work and sharing the preliminary results on the Hutubi natural gas repository. We thank two anonymous reviewers for their constructive comments that significantly improve the manuscript. This work was supported by the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant Nos. N_CUHK418/15, N_CUHK430/16), CUHK-University of Manchester Research Fund (Grant No. 4930227), United States National Science Foundation (Grant No. OCE-1357433), Natural Sciences and Engineering Research Council of Canada (Grant No. STPGP 494141-16), Japan Society for the Promotion of Science (Grant Nos. KAKENHI 2624004, 26280006), National Natural Science Foundation of China (Grant No. 41474033), and the Summer School Program of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongFeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, Y., Wei, M. et al. Induced earthquakes in the development of unconventional energy resources. Sci. China Earth Sci. 60, 1632–1644 (2017). https://doi.org/10.1007/s11430-017-9063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9063-0

Keywords

Navigation