Skip to main content
Log in

Thermospheric mass density derived from CHAMP satellite precise orbit determination data based on energy balance method

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In this article, the energy balance method is used to retrieve thermospheric mass density from CHAMP satellite precise orbit determination (POD) data during 2007–2009. The retrieved thermospheric mass densities are compared with those from accelerometer data and an empirical model. The main conclusions are as follows: (1) Thermospheric mass density can be retrieved from POD data by the energy balance and semi-major axis decay methods, whose results are consistent. (2) The accuracy of the retrieved densities depends on the integration time period, and the optimal period for CHAMP density retrieval from POD data is about 20 minutes. (3) The energy balance method can be used to calibrate accelerometer data. (4) The accuracy of retrieving thermospheric density from POD data varies with satellite altitude and local time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger C, Biancale R, Barlier F, Ill M. 1998. Improvement of the empirical thermospheric model DTM: DTM94—A comparative review of various temporal variations and prospects in space geodesy applications. J Geodesy, 72: 161–178

    Article  Google Scholar 

  • Bowman B R, Tobiska W K, Marcos F A, Huang C, Lin C, Burke W. 2008. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: AIAA/AAS Astrodynamics Specialist Conference, and Exhibit, Guidance, Navigation, and Control and Co-located Conferences. Honolulu. 6438

    Google Scholar 

  • Bruinsma S, Biancale R. 2003. Total density retrieval with STAR. In: Firs CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies. Berlin: Springer. 193–199

    Chapter  Google Scholar 

  • Bruinsma S, Tamagnan D, Biancale R. 2004. Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet Space Sci, 52: 297–312

    Article  Google Scholar 

  • Calabia A, Jin S. 2016. Assessment of conservative force models from GRACE accelerometers and precise orbit determination. Aerospace Sci Tech, 49: 80–87

    Article  Google Scholar 

  • Doornbos E, Förster M, Fritsche B, van Helleputte T, van den Ijssel J, Koppenwallner G, Lühr H, Rees D, Visser P, Kern M. 2009. Air density models derived from multi-satellite drag observations. In: Proceedings of ESAs Second Swarm International Science Meeting. Potsdam. 24–26

  • Doornbos E. 2012. Thermospheric Density and Wind Determination from Satellite Dynamics. Berlin: Springer Science & Business Media

    Book  Google Scholar 

  • Emmert J T. 2015. Thermospheric mass density: A review. Adv Space Res, 56: 773–824

    Article  Google Scholar 

  • Flury J, Bettadpur S, Tapley B D. 2008. Precise accelerometry onboard the GRACE gravity field satellite mission. Adv Space Res, 42: 1414–1423

    Article  Google Scholar 

  • Förste C, Schwintzer P, Reigber C. 2002. Format description: The CHAMP data format. CH-GFZ-FD-001

    Google Scholar 

  • Hedin A E. 1987. MSIS-86 thermospheric model. J Geophys Res, 92: 4649–4662

    Article  Google Scholar 

  • Jekeli C. 1999. The determination of gravitational potential differences from satellite-to-satellite tracking. Celestial Mech Dynamical Astron, 75: 85–101

    Article  Google Scholar 

  • König R, Schwintzer P, Reigber C. 2001. Format description: The CHAMP data format. CH-GFZ-FD-002

    Google Scholar 

  • Lei J, Thayer J P, Lu G, Burns A G, Wang W, Sutton E K, Emery B A. 2011a. Rapid recovery of thermosphere density during the October 2003 geomagnetic storms. J Geophys Res, 116: A03306

    Article  Google Scholar 

  • Lei J, Thayer J P, Wang W, McPherron R L. 2011b. Impact of CIR storms on thermosphere density variability during the Solar minimum of 2008. Sol Phys, 274: 427–437

    Article  Google Scholar 

  • Lei J, Burns A G, Thayer J P, Wang W, Mlynczak M G, Hunt L A, Dou X, Sutton E. 2012. Overcooling in the upper thermosphere during the recovery phase of the 2003 October storms. J Geophys Res, 117: A03314

    Google Scholar 

  • Li J S. 1995. Satellite Precision Orbit Determination (in Chinese). Beijing: PLA Press. 100–120

    Google Scholar 

  • Li W W, Li M, Shi C, Zhao L Q. 2016. Thermosphere mass density derivation using on-board accelerometer observations from GRACE satellites (in Chinese). Chin J Geophys, 59: 3159–3174

    Google Scholar 

  • Liu L. 1992. Orbital Mechanics of Artificial Earth Satellites. Beijing: Higher Education Publication House. 84–99

    Google Scholar 

  • Lühr H, Grunwaldt L, Förste C, Schwintzer P, Reigber C. 2001. CHAMP reference systems, transformations and standards. Internal publication. GFZ Potsdam. CH-GFZ-RS-002

    Google Scholar 

  • Marcos F A. 1990. Accuracy of atmospheric drag models at low satellite altitudes. Adv Space Res, 10: 417–422

    Article  Google Scholar 

  • Michalak G, Baustert G, König R, Reigber C. 2003. CHAMP Rapid Science Orbit Determination—Status and Future Prospects. In: First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies. Berlin: Springer. 98–103

    Chapter  Google Scholar 

  • Pavlis N K, Holmes S A, Kenyon S C, Factor J K. 2008. An earth gravitational model to degree 2160: EGM2008. EGU General Assembly. 13–18

    Google Scholar 

  • Petit G, Luzum B. 2010. IERS conventions (2010). IERS Technical Note 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie.

    Google Scholar 

  • Picone J M, Emmert J T, Lean J L. 2005. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets. J Geophys Res, 110: A03301

    Article  Google Scholar 

  • Picone J M, Hedin A E, Drob D P, Aikin A C. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res, 107: SIA 15-1–SIA 15-16

  • Reigber C, Lühr H, Schwintzer P. 2002. CHAMP mission status. Adv Space Res, 30: 129–134

    Article  Google Scholar 

  • Sang J, Smith C, Zhang K. 2012. Towards accurate atmospheric mass density determination using precise positional information of space objects. Adv Space Res, 49: 1088–1096

    Article  Google Scholar 

  • Sentman L H. 1961. Free Molecule Flow Theory and its Application to the Determination of Aerodynamic Forces. Sunnyvale: Lockheed Missiles And Space Co Inc

    Google Scholar 

  • Sutton E K, Nerem R S, Forbes J M. 2007. Density and winds in the thermosphere deduced from accelerometer data. J Spacecr Rockets, 44: 1210–1219

    Article  Google Scholar 

  • Tapley B D, Bettadpur S, Watkins M, Reigber C. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett, 31: L09607

    Article  Google Scholar 

  • Xiong Y Q, Wang H B, Zhao C Y, Xu X L. 2011. A Rapid and Effective Calibration Method for CHAMP Accelerometer. Prog Astron, 29: 228–237

    Google Scholar 

  • Xu T, Yang Y. 2004. Calibration for CHAMP accelerometry data based on known Earth gravity field model. Acta Geodaetica Cartogr Sin, 2004, 33: 200–204

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Sutton for providing data and helpful discussion, and Mr. Tang Geshi for useful suggestions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41325017 & 41274158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiuHou Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Lei, J., Wang, X. et al. Thermospheric mass density derived from CHAMP satellite precise orbit determination data based on energy balance method. Sci. China Earth Sci. 60, 1495–1506 (2017). https://doi.org/10.1007/s11430-016-9052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9052-1

Keywords

Navigation