Skip to main content
Log in

Distribution and enrichment patterns of selenium in the Ediacaran and early Cambrian strata in the Yangtze Gorges area, South China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The distribution and enrichment patterns of selenium (Se) in the E-Є1 strata in the Yangtze Gorges area of South China were obtained. The geochemical characteristics of the significantly and non-significantly enriched strata of Se were analyzed.The observed enrichment factor (EF, relative to the upper continental crust) and concentration coefficient (CC, relative to the similar lithology in Eastern China) both suggest that Se is the most enriched/concentrated (SeEF=26.97, SeCC=48.04) among the analyzed 23 trace elements the E-Є1 strata. The normalized enrichment factor (EF′, EF after Al or Th normalized) shows Se is secondly enriched (SeEF′=218.73), which is slightly lower than cadmium (CdEF′=288.46) but significantly higher than the third enriched trace element arsenic (AsEF′=97.49). Se concentrations in the E-Є1 strata vary from <10‒5 to 30.08 ppm with an arithmetic mean value of 1.35 ppm. Compared to the Nantuo Formation, Se increased 11.78 times in the whole E-Є1 strata and the average EF values are displayed as Shuijingtuo (92.58)>Yanjiahe (54.45)>Doushantuo (24.72)>Dengying (2.48)>Shipai (1.95)>lower Tianheban (1.24) Formations. Se concentrations in the E-Є1 strata are best displayed on natural logarithm normal quantile-quantile (Q-Q) plots and shown as a positive-skewed distribution pattern. The Se significantly enriched (EF>10) strata sequences mainly include the lower and upper Doushantuo member II (DST-II), top DST-III, DST-IV, the basal and upper Yanjiahe Formation, and lower and upper Shuijingtuo Formation. Geochemical characteristics indicate that Se concentrations in the significantly enriched strata were generally influenced by terrigenous detrital as well as the combined action of single or multiple factors, such as hydrotherm, volcanic debris and deep source. Moreover, pyrite and organic matter promoted the enrichment of Se in the upper DST-II, DST-IV, upper Shuijingtuo Formation and lower DST-II, upper Shuijingtuo Formation, respectively. The Se concentrations in the not significantly enriched strata (except for DST-I, middle Shuijingtuo Formation, Shipai Formation and lower Tianheban Formation) were also influenced by terrigenous detrital, but other enrichment activities (e.g., hydrothermal, volcanic debris, and deep source) were generally insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi M, Yamamoto K, Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity. Sediment Geol, 47: 125–148

    Article  Google Scholar 

  • Algeo T J, Maynard J B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 206: 289–318

    Article  Google Scholar 

  • Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta, 63: 363–372

    Article  Google Scholar 

  • Auclair G, Fouquet Y, Bohn M. 1987. Distribution of selenium in high-temperature hydrothermal sulfide deposits at 13°N, East Pacific Rise. Can Mineral, 25: 577–587

    Google Scholar 

  • Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res, 79: 37–55

    Article  Google Scholar 

  • Boström K. 1983. Genesis of Ferromanganese Deposits-Diagnostic Criteria for Recent and Old Deposits. New York: Plenum Press. 473–489

    Google Scholar 

  • Brookins D. 1989. Aqueous geochemistry of rare earth elements. Rev Mineral Geochem, 21: 201–225

    Google Scholar 

  • Calvert S E, Pedersen T F. 1993. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Mar Geol, 113: 67–88

    Article  Google Scholar 

  • Chen Z, Zhou C M, Meyer M, Xiang K, Schiffbauer J D, Yuan X L, Xiao S H. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Res, 224: 690–701

    Article  Google Scholar 

  • Chi Q H, Yan M C. 2007. Handbook of Elemental Abundance for Applied Geochemistry (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Condon D, Zhu M Y, Bowring S, Wang W, Yang A H, Jin Y G. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308: 95–98

    Article  Google Scholar 

  • Ding Z J, Liu C Q, Yao S Z, Zhou Z G. 2000. Rare earth elements compostitions of high-temperature hydrpthermal fluids in sea floor and control factors (in Chinese with English abstract). Adv Earth Sci, 15: 68–73

    Google Scholar 

  • Filippelli G M. 2008. The global phosphorus cycle: Past, present, and future. Elements, 4: 89–95

    Article  Google Scholar 

  • Floor G H, Román-Ross G. 2012. Selenium in volcanic environments: A review. Appl Geochem, 27: 517–531

    Article  Google Scholar 

  • Guo J F, Li Y, Li G X. 2014. Small shelly fossils from the early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Res, 25: 999–1007

    Article  Google Scholar 

  • Guo Q J, Shields G A, Liu C Q, Strauss H, Zhu M Y, Pi D H, Goldberg T, Yang X L. 2007. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 194–216

    Article  Google Scholar 

  • Hatch J R, Leventhal J S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem Geol, 99: 65–82

    Article  Google Scholar 

  • Huang J, Chu X L, Chang H J, Feng L J. 2009. Trace element and rare earth element of cap carbonate in Ediacaran Doushantuo Formation in Yangtze Gorges. Chin Sci Bull, 54: 3295–3302

    Article  Google Scholar 

  • Ishikawa T, Ueno Y, Komiya T, Sawaki Y, Han J, Shu D G, Li Y, Maruyama S, Yoshida N. 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Res, 14: 193–208

    Article  Google Scholar 

  • Ishikawa T, Ueno Y, Shu D, Li Y, Han J, Guo J, Yoshida N, Komiya T. 2013. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: High-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China. Precambrian Res, 225: 190–208

    Article  Google Scholar 

  • Jiang G Q, Kaufman A J, Christie-Blick N, Zhang S H, Wu H C. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci Lett, 261: 303–320

    Article  Google Scholar 

  • Jiang G Q, Shi X Y, Zhang S H, Wang Y, Xiao S H. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Res, 19: 831–849

    Article  Google Scholar 

  • Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol, 111: 111–129

    Article  Google Scholar 

  • Large R R, Halpin J A, Danyushevsky L V, Maslennikov V V, Bull S W, Long J A, Gregory D D, Lounejeva E, Lyons T W, Sack P J, McGoldrick P J, Calver C R. 2014. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Planet Sci Lett, 389: 209–220

    Article  Google Scholar 

  • Ling H F, Chen X, Li D, Wang D, Shields-Zhou G A, Zhu M Y. 2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Res, 225: 110–127

    Article  Google Scholar 

  • Liu P J, Yin C Y, Chen S M, Tang F, Gao L Z. 2013. The biostratigraphic succession of acanthomorphic acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China and its biostratigraphic correlation with Australia. Precambrian Res, 225: 29–43

    Article  Google Scholar 

  • Liu P J, Yin C Y, Gao L Z, Tang F, Chen S M. 2009a. New material of microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping area, Yichang, Hubei Province and its zircon SHRIMP U-Pb age. Chin Sci Bull, 54: 1058–1064

    Google Scholar 

  • Liu Y Q, Kuang H W, Peng N. 2009b. Barite from the top Ediacaran Doushantuo Formation in the EastYangtze Gorges Area and its geological implications (in Chinese with English abstract). Acta Geosci Sin, 30: 487–494

    Google Scholar 

  • Luo K L. 2011. Arsenic and fluorine contents and distribution patterns of Early Paleozoic stonelike coal in the Daba Fold Zone and Yangtze Plate, China. Energy Fuels, 25: 4479–4487

    Article  Google Scholar 

  • Luo K L, Xu L R, Tan J A, Wang D H, Xiang L H. 2004. Selenium source in the selenosis area of the Daba region, South Qinling Mountain, China. Environ Geol, 45: 426–432

    Article  Google Scholar 

  • Marchig V, Gundlach H, Möller P, Schley F. 1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Mar Geol, 50: 241–256

    Article  Google Scholar 

  • McFadden K A, Huang J, Chu X, Jiang G, Kaufman A J, Zhou C, Yuan X, Xiao S. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197–3202

    Article  Google Scholar 

  • McFadden K A, Xiao S H, Zhou C M, Kowalewski M. 2009. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China. Precambrian Res, 173: 170–190

    Article  Google Scholar 

  • McLennan S M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst, 2: 1021–24

    Article  Google Scholar 

  • Michard A, Albarède F. 1986. The REE content of some hydrothermal fluids. Chem Geol, 55: 51–60

    Article  Google Scholar 

  • Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sediment Geol, 90: 213–232

    Article  Google Scholar 

  • Murray R W, Buchholtz ten Brink M R, Jones D L, Gerlach D C, Russ III G P. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18: 268–271

    Article  Google Scholar 

  • Nance W B, Taylor S R. 1976. Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks. Geochim Cosmochim Acta, 40: 1539–1551

    Article  Google Scholar 

  • Ni R X, Luo K L, Tian X L, Yan S G, Zhong J T, Liu M Q. 2016. Distribution and geological sources of selenium in environmental materials in Taoyuan County, Hunan Province, China. Environ Geochem Health, 38: 927–938

    Article  Google Scholar 

  • Niu C X, Luo K L. 2011. Relationship of selenium, arsenic and sulfur in soil and plants in Enshi County. China. J Food Agric Environ, 9: 646–651

    Google Scholar 

  • Nozaki Y. 1997. A fresh look at element distribution in the North Pacific Ocean. Eos Trans AGU, 78: 221

    Google Scholar 

  • Okada Y, Sawaki Y, Komiya T, Hirata T, Takahata N, Sano Y, Han J, Maruyama S. 2014. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng’an and Chengjiang areas, South China. Gondwana Res, 25: 1027–1044

    Article  Google Scholar 

  • Olivarez A M, Owen R M. 1991. The europium anomaly of seawater: Implications for fluvial versus hydrothermal REE inputs to the oceans. Chem Geol, 92: 317–328

    Article  Google Scholar 

  • Pattan J N, Pearce N J G, Mislankar P G. 2005. Constraints in using Ceriumanomaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the Central Indian Ocean Basin. Chem Geol, 221: 260–278

    Article  Google Scholar 

  • Pi D H, Jiang S Y, Luo L, Yang J H, Ling H F. 2014. Depositional environments for stratiform witherite deposits in the Lower Cambrian black shale sequence of the Yangtze Platform, southern Qinling region, SW China: Evidence from redox-sensitive trace element geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol, 398: 125–131

    Article  Google Scholar 

  • Pi D H, Liu C Q, Shields-Zhou G A, Jiang S Y. 2013. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Res, 225: 218–229

    Article  Google Scholar 

  • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325–394

    Article  Google Scholar 

  • Plant J A, Bone J, Voulvoulis N, Kinniburgh D G, Smedley P L, Fordyce F M, Klinck B. 2014. 11.2 arsenic and selenium. In: Turekian H D H K, ed. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier. 13–57

    Chapter  Google Scholar 

  • Rawlins B, McGrath S, Scheib A, Breward N, Cave M, Lister T, Ingham M, Gowing C, Carter S. 2012. The Advanced Soil Geochemical Atlas of England and Wales. British Geological Survey

    Google Scholar 

  • Rimmer S M. 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem Geol, 206: 373–391

    Article  Google Scholar 

  • Rimmer S, Thompson J, Goodnight S, Robl T. 2004. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeogr Palaeoclimatol Palaeoecol, 215: 125–154

    Article  Google Scholar 

  • Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman D G, Hoekstra W G. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179: 588–590

    Article  Google Scholar 

  • Rouxel O, Fouquet Y, Ludden J N. 2004. Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: Evidence from sulfur, selenium, and iron isotopes. Geochim Cosmochim Acta, 68: 2295–2311

    Article  Google Scholar 

  • Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456–459

    Article  Google Scholar 

  • Sverjensky D A. 1984. Europium redox equilibria in aqueous solution. Earth Planet Sci Lett, 67: 70–78

    Article  Google Scholar 

  • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxfold: Blackwell. 312

    Google Scholar 

  • Tian X L, Luo K L. 2017. Selenium, arsenic and molybdenum variation and bio-radiation in the Ediacaran-Cambrian interval. Precambrian Res, 292: 378–385

    Article  Google Scholar 

  • Tian X L, Luo K L, Wang S B, Ni R X. 2014. Geochemical characteristics of trace elements and rare earth elements during the Cryogenian-Ediacaran transition in Yangtze Gorges area (in Chinese with English abstract). J Palaeogeogr, 16: 483–502

    Google Scholar 

  • Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol, 232: 12–32

    Article  Google Scholar 

  • van Kranendonk M J, Webb G E, Kamber B S. 2003. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology, 1: 91–108

    Article  Google Scholar 

  • Wedepohl K H, Correns C W. 1969. Handbook of Geochemistry. Berlin: Springer Verlag

    Book  Google Scholar 

  • Xiang L W, Zhu Z L, Li S J, Zhou Z Q. 1999. Stratigraphical Lexicon of China-Cambrian (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Yan B, Zhu X K, Zhang F F, Tang S H. 2014. Why terrestrial stable carbon- isotope stratigraphy works: A Review. Acta Geol Sin-Engl Ed, 88: 1603–1613

    Article  Google Scholar 

  • Yin C Y, Liu P J, Chen S M, Tang F, Gao L Z, Wang Z Q. 2009. Acritarch biostratigraphic succession of the Ediacaran Doushantuo Formation in the Yangtze Gorges (in Chinese with English abstract). Acta Palaeontol Sin, 48: 146–154

    Google Scholar 

  • Yin C Y, Tang F, Liu Y Q, Gao L Z, Liu P J, Xing Y S, Yang Z Q, Wan Y S, Wang Z Q. 2005. U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China: Constraint on the age of Marinoan glaciation. Episodes, 28: 48–49

    Google Scholar 

  • Zhang C, Manheim F T, Hinde J, Grossman J N. 2005. Statistical characterization of a large geochemical database and effect of sample size. Appl Geochem, 20: 1857–1874

    Article  Google Scholar 

  • Zhao Z Q, Xing Y S, Ma G G, Chen Y. 1985. Biostratigraphy of the Yangtze Gorge Area, (1) Sinian (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Zhu M Y, Lu M, Zhang J M, Zhao F C, Li G X, Yang A H, Zhao X, Zhao M J. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, south China. Precambrian Res, 225: 7–28

    Article  Google Scholar 

Download references

Acknowledgements

We owe great thanks to Prof. Qinghun Guo for his help in TOC analyses. We thank Hongzhi Zhang for technical support and assistance during ICP-MS and ICP-OES analysis. We also thank Dr. Shaobin Wang and Dr. Runxiang Ni for their assistance in the field. We are greatful to Dr. Andrew V. Zuza for his efforts for English editing. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41172310 & 41472322) and the National Basic Research Program of China (Grant No. 2014CB238906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KunLi Luo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Luo, K. Distribution and enrichment patterns of selenium in the Ediacaran and early Cambrian strata in the Yangtze Gorges area, South China. Sci. China Earth Sci. 60, 1268–1282 (2017). https://doi.org/10.1007/s11430-016-9045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9045-1

Keywords

Navigation