Skip to main content
Log in

Contribution of baseflow nitrate export to non-point source pollution

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

As a common pollutant of nitrogen in groundwater, nitrate contamination has become a major concern worldwide. Baseflow, one of the dominant hydrological pathways for nitrate migration to streamflow, has been confirmed as a leading nitrate source for stream water where groundwater or subsurface flow contaminated heavily by nitrate. That is, sufficient improvements of water quality may not be attained without proper management for baseflow, even if non-point sources (NPS) pollutants discharged through surface runoff are being well managed. This article reviews the primary nitrate sources, the main factors affecting its transport, and the methodologies for baseflow nitrate estimation, to give some recommendations for future works, including: (1) giving sufficient consideration for the effects of climatological, morphological, and geological factors on baseflow recessions to obtain more reliable and accurate baseflow separation; (2) trying to solve calibration and validation problems for baseflow loads determining in storm flow period; (3) developing a simple and convenient algorithm with certain physics that can be used to separate baseflow NPS pollution from the total directly in different regions, for a reliable estimation of baseflow NPS pollution at larger scale (e.g., national scale); (4) improving groundwater quality simulation module of existing NPS pollution models to have a better simulation for biogeochemical processes in shallow aquifers; (5) taking integrated measures of “source control”, “process interception” and “end remediation” to prevent and control NPS nitrate pollution effectively, not just only the strict control of nutrients loss from surface runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allott T E, Curtis C J, Hall J, Harriman R, Battarbee R W. 1995. The impact of nitrogen deposition on upland surface waters in Great Britain: A regional assessment of nitrate leaching. Water Air Soil Poll, 85: 297–302

    Article  Google Scholar 

  • Angelopoulos K, Spiliopoulos I, Mandoulaki A, Theodorakopoulou A, Kouvelas A. 2009. Groundwater nitrate pollution in northern part of Achaia Prefecture. Desalination, 248: 852–858

    Article  Google Scholar 

  • Angle J, Gross C, Hill R, McIntosh M. 1993. Soil nitrate concentrations under corn as affected by tillage, manure, and fertilizer applications. J Environ Qual, 22: 141–147

    Article  Google Scholar 

  • Arheimer B, Liden R. 2000. Nitrogen and phosphorus concentrations from agricultural catchments-influence of spatial and temporal variables. J Hydrol, 227: 140–159

    Article  Google Scholar 

  • Armbruster J T. 1976. An infiltration index useful in estimating low-flow characteristics of drainage basin. J Res USGS, 4: 533–538

    Google Scholar 

  • Arnold J G, Muttiah R S, Srinivasan R, Allen P M. 2000. Regional estimation of baseflow and groundwater recharge in the Upper Mississippi river basin. J Hydrol, 227: 21–40

    Article  Google Scholar 

  • Baker J, Johnson H. 1981. Nitrate-nitrogen in tile drainage as affected by fertilization. J Environ Qual, 10: 519–522

    Article  Google Scholar 

  • Becker M, Georgian T, Ambrose H, Siniscalchi J, Fredrick K. 2004. Estimating flow and flux of ground water discharge using water temperature and velocity. J Hydrol, 296: 221–233

    Article  Google Scholar 

  • Best A, Arnaud E, Parker B, Aravena R, Dunfield K. 2015. Effects of glacial sediment type and land use on nitrate patterns in groundwater. Ground Water Monit R, 35: 68–81

    Google Scholar 

  • Bloomfield J, Allen D, Griffiths K. 2009. Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK. J Hydrol, 373: 164–176

    Article  Google Scholar 

  • Borah D, Bera M. 2003. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. T Asae, 46: 1553

    Article  Google Scholar 

  • Boughton W. 1993. A hydrograph-based model for estimating the water yield of ungauged catchments. Aus Nat Conf Publ, 93/14: 299–304

    Google Scholar 

  • Bouraoui F, Dillaha T A. 2000. ANSWERS-2000: Non-point source nutrient planning model. J Environ Eng-Asce, 126: 1045–1055

    Article  Google Scholar 

  • Brodie R, Hostetler S. 2005. A review of techniques for analysing baseflow from stream hydrographs. In: Acworth R I, Macky G, Merrick N P, eds. Proceedings of the NZHS-IAH-NZSSS 2005 conference. Auckland: New Zealand Hydrological Society Press. 5–18

    Google Scholar 

  • Brown C, Marshall V, Carter A, Walker A, Arnold D, Jones R. 1999. Investigation into the effect of tillage on solute movement to drains through a heavy clay soil. Soil Use Manage, 15: 84–93

    Article  Google Scholar 

  • Brunner P, Simmons C T. 2012. HydroGeoSphere: A fully integrated, physically based hydrological model. Ground Water, 50: 170–176

    Article  Google Scholar 

  • Buczko U, Kuchenbuch R O, Lennartz B. 2010. Assessment of the predictive quality of simple indicator approaches for nitrate leaching from agricultural fields. J Environ Manage, 91: 1305–1315

    Article  Google Scholar 

  • Butt T, Gouda H, Baloch M, Paul P, Javadi A, Alam A. 2014. Literature review of baseline study for risk analysis-The landfill leachate case. Environ Int, 63: 149–162

    Article  Google Scholar 

  • Cambouris A, Zebarth B, Nolin M, Laverdière M. 2008. Apparent fertilizer nitrogen recovery and residual soil nitrate under continuous potato cropping: Effect of N fertilization rate and timing. Can J Soil Sci, 88: 813–825

    Article  Google Scholar 

  • Campling P, Gobin A, Beven K, Feyen J. 2002. Rainfall-runoff modelling of a humid tropical catchment: The TOPMODEL approach. Hydrol Process, 16: 231–253

    Article  Google Scholar 

  • Candela L, Fabregat S, Josa A, Suriol J, Vigués N, Mas J. 2007. Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course (Girona, Spain). Sci Total Environ, 374: 26–35

    Article  Google Scholar 

  • Caruso B S. 2000. Spatial and temporal variability of stream phosphorus in a New Zealand high-country agricultural catchment. New Zeal J Agr Res, 43: 235–249

    Article  Google Scholar 

  • Chang D, Ma Z. 2012. Wastewater reclamation and reuse in Beijing: Influence factors and policy implications. Desalination, 297: 72–78

    Article  Google Scholar 

  • Chapman T G. 1991. Comment on “Evaluation of automated techniques for baseflow and recession analyses” by RJ Nathan and TA McMahon. Water Resour Res, 27: 1783–1784

    Article  Google Scholar 

  • Chen L. 2013. Modeling of the water flow and nitrate transportin the shallow aquifer of the Shaying River Basinand its contribution to river pollution. Doctoral Dissertation. NanJing: NanJing University

    Google Scholar 

  • Chen L, Liu C, Li F. 2006. Reviews on baseflow researches (in Chinese). Prog Geogr, 25: 1–15

    Google Scholar 

  • Chen L, Zheng H, David Chen Y, Liu C. 2008. Baseflow separation in the source region of the Yellow River. J Hydrol Eng, 13: 541–548

    Article  Google Scholar 

  • Chowdary V, Rao N, Sarma P. 2005. Decision support framework for assessment of non-point source pollution of groundwater in large irrigation projects. Agr Water Manage, 75: 194–225

    Article  Google Scholar 

  • Conan C, Bouraoui F, Turpin N, de Marsily G, Bidoglio G. 2003. Modeling flow and nitrate fate at catchment scale in Brittany (France). J Environ Qual, 32: 2026–2032

    Article  Google Scholar 

  • Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerveillant P, Beaudoin N. 2010. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agr Ecosyst Environ, 135: 268–278

    Article  Google Scholar 

  • Cook P, Favreau G, Dighton J, Tickell S. 2003. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J Hydrol, 277: 74–88

    Article  Google Scholar 

  • Cook P G, Wood C, White T, Simmons C T, Fass T, Brunner P. 2008. Groundwater inflow to a shallow, poorly-mixed wetland estimated from a mass balance of radon. J Hydrol, 354: 213–226

    Article  Google Scholar 

  • Corwin D L, Vaughan P J, Loague K. 1997. Modeling nonpoint source pollutants in the vadose zone with GIS. Environ Sci Technol, 31: 2157–2175

    Article  Google Scholar 

  • Darwish T, Atallah T, Hajhasan S, Chranek A. 2003. Management of nitrogen by fertigation of potato in Lebanon. Nutr Cycl Agroecosys, 67: 1–11

    Article  Google Scholar 

  • David M B, Gentry L E, Kovacic D A, Smith K M. 1997. Nitrogen balance in and export from an agricultural watershed. J Environ Qual, 26: 1038–1048

    Article  Google Scholar 

  • Dawson J C, Huggins D R, Jones S S. 2008. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crop Res, 107: 89–101

    Article  Google Scholar 

  • De Graaf I, van Beek L, Wada Y, Bierkens M. 2014. Dynamic attribution of global water demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges. Adv Water Resour, 64: 21–33

    Article  Google Scholar 

  • De Ruijter F, Boumans L, Smit A, Van den Berg M. 2007. Nitrate in upper groundwater on farms under tillage as affected by fertilizer use, soil type and groundwater table. Nutr Cycl Agroecosys, 77: 155–167

    Article  Google Scholar 

  • Di H, Cameron K. 2002. Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutr Cycl Agroecosys, 64: 237–256

    Article  Google Scholar 

  • Donn M J, Barron O V, Barr A D. 2012. Identification of phosphorus export from low-runoff yielding areas using combined application of high frequency water quality data and MODHMS modelling. Sci Total Environ, 426: 264–271

    Article  Google Scholar 

  • Dow C L. 2007. Assessing regional land-use/cover influences on New Jersey Pinelands streamflow through hydrograph analysis. Hydrol Process, 21: 185–197

    Article  Google Scholar 

  • Drinkwater L, Janke R, Rossoni-Longnecker L. 2000. Effects of tillage intensity on nitrogen dynamics and productivity in legume-based grain systems. Plant Soil, 227: 99–113

    Article  Google Scholar 

  • Dubrovsky N M, Burow K R, Clark G M, Gronberg J, Hamilton P A, Hitt K J, Mueller D K, Munn M D, Nolan B T, Puckett L J. 2010. The quality of our nation’s waters-nutrients in the nation’s streams and groundwater, 1992–2004. Technical Report. No. 2330–5703. United States Geological Survey

    Google Scholar 

  • Eckhardt K. 2005. How to construct recursive digital filters for baseflow separation. Hydrol Process, 19: 507–515

    Article  Google Scholar 

  • Eckhardt K. 2008. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J Hydrol, 352: 168–173

    Article  Google Scholar 

  • Ellis J B. 1986. Pollutional aspects of urban runoff. Urban runoff Pollut, 10: 1–38

    Article  Google Scholar 

  • Emmett B A, Beier C, Estiarte M, Tietema A, Kristensen H L, Williams D, Penuelas J, Schmidt I, Sowerby A. 2004. The response of soil processes to climate change: Results from manipulation studies of shrublands across an environmental gradient. Ecosystems, 7: 625–637

    Article  Google Scholar 

  • Evans C D, Norris D, Ostle N, Grant H, Rowe E C, Curtis C J, Reynolds B. 2008. Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils. Environ Pollut, 156: 636–643

    Article  Google Scholar 

  • Fatta D, Papadopoulos A, Loizidou M. 1999. A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environ Geochem Hlth, 21: 175–190

    Article  Google Scholar 

  • Fewtrell L. 2004. Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environ Health Persp, 112: 1371–1374

    Article  Google Scholar 

  • Fitzhugh R D, Likens G E, Driscoll C T, Mitchell M J, Groffman P M, Fahey T J, Hardy J P. 2003. Role of soil freezing events in interannual patterns of stream chemistry at the Hubbard Brook Experimental Forest, New Hampshire. Environ Sci Technol, 37: 1575–1580

    Article  Google Scholar 

  • Furey P R, Gupta V K. 2001. A physically based filter for separating baseflow from streamflow time series. Water Resour Res, 37: 2709–2722

    Article  Google Scholar 

  • Gaines T P, Gaines S. 1994. Soil texture effect on nitrate leaching in soil percolates. Commun Soil Sci Plan, 25: 2561–2570

    Article  Google Scholar 

  • Galbiati L, Bouraoui F, Elorza F, Bidoglio G. 2006. Modeling diffuse pollution loading into a Mediterranean lagoon: Development and application of an integrated surface-subsurface model tool. Ecol Model, 193: 4–18

    Article  Google Scholar 

  • Galeone D. 2005. Pequea and mill creek watersheds section 319 NMP Project: Effects of streambank fencing on surface-water quality. NWQEP Notes 118: August, 2005. North Carolina State University

    Google Scholar 

  • Gburek W, Folmar G. 1999. Flow and chemical contributions to stream flow in an upland watershed: A baseflow survey. J Hydrol, 217: 1–18

    Article  Google Scholar 

  • Gebert W A, Radloff M J, Considine E J, Kennedy J L. 2007. Use of streamflow data to estimate baseflow/groundwater recharge for Wisconsin. J Am Water Resour As, 43: 220–236

    Article  Google Scholar 

  • Gheysari M, Mirlatifi S M, Homaee M, Asadi M E, Hoogenboom G. 2009. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agr Water Manage, 96: 946–954

    Article  Google Scholar 

  • Gholamhoseini M, AghaAlikhani M, Sanavy S M, Mirlatifi S. 2013. Interactions of irrigation, weed and nitrogen on corn yield, nitrogen use efficiency and nitrate leaching. Agr Water Manage, 126: 9–18

    Article  Google Scholar 

  • Golubev G N, Biswas A K. 1985. Large Scale Water Transfers: Emerging Environmental and Social Experiences. Oxford: Tycooly Publishers. 158

    Google Scholar 

  • Goolsby D A, Battaglin W A, Lawrence G B, Artz R S, Aulenbach B T, Hooper R P, Keeney D R, Stensland G J. 1999. Flux and sources of nutrients in the Mississippi-Atchafalaya River Basin. Technical Report. National Oceanic and Atmospheric Administration

    Google Scholar 

  • Goswami D, Kalita P K. 2009. Simulation of baseflow and tile-flow for storm events in a subsurface drained watershed. Biosyst Eng, 102: 227–235

    Article  Google Scholar 

  • Goswami D, Kalita P K, Mehnert E. 2010. Modeling and simulation of baseflow to drainage ditches during low-flow periods. Water Resour Manag, 24: 173–191

    Article  Google Scholar 

  • Grizzetti B, Bouraoui F, De Marsily G. 2005. Modelling nitrogen pressure in river basins: A comparison between a statistical approach and the physically-based SWAT model. Phys Chem Earth, 30: 508–517

    Article  Google Scholar 

  • Gu B J, Ge Y, Chang S X, Luo W D, Chang J. 2013. Nitrate in groundwater of China: Sources and driving forces. Global Environ Chang, 23: 1112–1121

    Article  Google Scholar 

  • Gupta S K, Gupta R C, Gupta A B, Seth A K, Bassin J K, Gupta A, Sharma M L. 2001. Recurrent diarrhea in children living in areas with high levels of nitrate in drinking water. Arch Environ Health, 56: 369–373

    Article  Google Scholar 

  • Haith D A, Shoenaker L L. 1987. Generalized watershed loading functions for streamflow nutrients. Water Resour Bull, 23: 471–478

    Article  Google Scholar 

  • Hall F R. 1968. Baseflow recessions—A review. Water Resour Res, 4: 973–983

    Article  Google Scholar 

  • Halvorson A D, Wienhold B J, Black A L. 2001. Tillage and nitrogen fertilization influence grain and soil nitrogen in an annual cropping system. Agron J, 93: 836–841

    Article  Google Scholar 

  • Hansen E M, Djurhuus J. 1997. Nitrate leaching as influenced by soil tillage and catch crop. Soil Till Res, 41: 203–219

    Article  Google Scholar 

  • Harrison W G. 1976. Nitrate metabolism of the red tide dinoflagellate Gonyaulax polyedra Stein. J Exp Mar Biol Ecol, 21: 199–209

    Article  Google Scholar 

  • Hattermann F, Krysanova V, Habeck A, Bronstert A. 2006. Integrating wetlands and riparian zones in river basin modelling. Ecol Model, 199: 379–392

    Article  Google Scholar 

  • Hewlett J D, Hibbert A R. 1967. Factors affecting the response of small watersheds to precipitation in humid areas. Forest Hydrol, 1: 275–290

    Google Scholar 

  • Hicks B, Beschta R, Harr R. 1991. Long-term changes in streamflow following logging in western Oregon and associated fisheries implications. Water Resour Bull, 27: 217–226

    Article  Google Scholar 

  • Hlásny T, Kočický D, Maretta M, Sitková Z, Barka I, Konôpka M, Hlavatá H. 2015. Effect of deforestation on watershed water balance: Hydrological modelling-based approach/Vplyv odlesnenia na vodnú bilanciu povodia: Prístup na báze hydrologického modelovania. Forest J, 61: 89–100

    Article  Google Scholar 

  • Hofreither M, Pardeller K. 1996. Ökonometrische analyse des zusammenhanges zwischen agrarproduktion und nitratbelastung des grundwassers in österreich. Die Bodenkultur, 47: 279–289

    Google Scholar 

  • Hooda P, Edwards A, Anderson H, Miller A. 2000. A review of water quality concerns in livestock farming areas. Sci Total Environ, 250: 143–167

    Article  Google Scholar 

  • Hooker K, Coxon C, Hackett R, Kirwan L, O’Keeffe E, Richards K. 2008. Evaluation of cover crop and reduced cultivation for reducing nitrate leaching in Ireland. J Environ Qual, 37: 138–145

    Article  Google Scholar 

  • Huyck A A O, Pauwels V R N, Verhoest N E C. 2005. A baseflow separation algorithm based on the linearized Boussinesq equation for complex hillslopes. Water Resour Res, 41: W08415

    Article  Google Scholar 

  • Iglesias R, Ortega E, Batanero G, Quintas L. 2010. Water reuse in Spain: Data overview and costs estimation of suitable treatment trains. Desalination, 263: 1–10

    Article  Google Scholar 

  • Jackson W, Asmussen L, Hauser E, White A. 1973. Nitrate in surface and subsurface flow from a small agricultural watershed. J Environ Qual, 2: 480–482

    Article  Google Scholar 

  • Jain A, Rai S, Sharma E. 2000. Hydro-ecological analysis of a sacred lake watershed system in relation to land-use/cover change from Sikkim Himalaya. Catena, 40: 263–278

    Article  Google Scholar 

  • Jaynes D, Colvin T, Karlen D, Cambardella C, Meek D. 2001. Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. J Environ Qual, 30: 1305–1314

    Article  Google Scholar 

  • Jiang Y, Jamieson T, Nyiraneza J, Somers G, Thompson B, Murray B, Grimmett M, Geng X. 2015. Effects of fall vs. spring plowing forages on nitrate leaching losses to groundwater. Ground Water Monit R, 35: 43–54

    Google Scholar 

  • Johnson P T, Townsend A R, Cleveland C C, Glibert P M, Howarth R W, McKenzie V J, Rejmankova E, Ward M H. 2010. Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecol Appl, 20: 16–29

    Article  Google Scholar 

  • Kaçaroğlu F, Günay G. 1997. Groundwater nitrate pollution in an alluvium aquifer, Eskişehir urban area and its vicinity, Turkey. Environ Geol, 31: 178–184

    Article  Google Scholar 

  • Kemp W, Boynton W, Adolf J, Boesch D, Boicourt W, Brush G, Cornwell J, Fisher T, Glibert P, Hagy J. 2005. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Mar Ecol Prog Ser, 303: 1–29

    Article  Google Scholar 

  • Kim G, Lee H, Lim Y, Jung M, Kong D. 2010. Baseflow contribution to nitrates in an urban stream in Daejeon, Korea. Water Sci Technol, 61: 3216–3220

    Article  Google Scholar 

  • Klaus J, McDonnell J. 2013. Hydrograph separation using stable isotopes: Review and evaluation. J Hydrol, 505: 47–64

    Article  Google Scholar 

  • Kogl D R. 1971. Monitoring and Evaluation of Arctic Waters with Emphasis on the North Slope Drainages: Colville River Study. Annual Report. Division of Sports Fish, Alaska Department of Fish and Game

    Google Scholar 

  • Koh D C, Mayer B, Lee K S, Kyung Seok K. 2010. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers. J Contam Hydrol, 118: 62–78

    Article  Google Scholar 

  • Kollet S J, Maxwell R M. 2006. Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour, 29: 945–958

    Article  Google Scholar 

  • Korsaeth A, Eltun R. 2000. Nitrogen mass balances in conventional, integrated and ecological cropping systems and the relationship between balance calculations and nitrogen runoff in an 8-year field experiment in Norway. Agr Ecosyst Environ, 79: 199–214

    Article  Google Scholar 

  • Kottegoda N, Natale L. 1994. Two-component log-normal distribution of irrigation-affected low flows. J Hydrol, 158: 187–199

    Article  Google Scholar 

  • Kraft G J, Stites W. 2003. Nitrate impacts on groundwater from irrigated- vegetable systems in a humid north-central US sand plain. Agr Ecosyst Environ, 100: 63–74

    Article  Google Scholar 

  • Kumar M, Ramanathan A, Rao M, Kumar B. 2006. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geol, 50: 1025–1039

    Article  Google Scholar 

  • Lacey G, Grayson R. 1998. Relating baseflow to catchment properties in south-eastern Australia. J Hydrol, 204: 231–250

    Article  Google Scholar 

  • Lam Q, Schmalz B, Fohrer N. 2010. Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agr Water Manage, 97: 317–325

    Article  Google Scholar 

  • Lerner D N, Yang Y, Barrett M H, Tellam J. 1999. Loadings of non-agricultural nitrogen in urban groundwater. IAHS Publ, 259: 117–124

    Google Scholar 

  • Lewandowski J, Meinikmann K, Nützmann G, Rosenberry D O. 2015. Groundwater-the disregarded component in lake water and nutrient budgets. 2. Effects of groundwater on nutrients. Hydrol Process, 29: 2922–2955

    Article  Google Scholar 

  • Liang X Q, Xu L, Li H, He M M, Qian Y C, Liu J, Nie Z Y, Ye Y S, Chen Y. 2011. Influence of N fertilization rates, rainfall, and temperature on nitrate leaching from a rainfed winter wheat field in Taihu watershed. Phys Chem Earth, 36: 395–400

    Article  Google Scholar 

  • Lindsey B D, Phillips S W, Donnelly C A, Speiran G K, Plummer L N, Bohlke J K, Focazio M J, Burton W C, Busenberg E. 2003. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed. Water Resources Investigations Report 03–4035. United States Geological Survey

    Google Scholar 

  • Linsley R, Kohler M, Paulhus J. 1949. Applied Hydrology. New York: McGraw-Hill. 696

    Google Scholar 

  • Linsley R, Kohler M, Paulus L. 1958. Hydrology for Engineers. New York: MeGraw-Hill. 340

    Google Scholar 

  • Longe E, Balogun M. 2010. Groundwater quality assessment near a municipal landfill, Lagos, Nigeria. Res J Appl Sci Eng Tech, 2: 39–44

    Google Scholar 

  • Longobardi A, Villani P. 2008. Baseflow index regionalization analysis in a mediterranean area and data scarcity context: Role of the catchment permeability index. J Hydrol, 355: 63–75

    Article  Google Scholar 

  • Lubello C, Gori R, Nicese F P, Ferrini F. 2004. Municipal-treated wastewater reuse for plant nurseries irrigation. Water Res, 38: 2939–2947

    Article  Google Scholar 

  • Lunau M, Voss M, Erickson M, Dziallas C, Casciotti K, Ducklow H. 2013. Excess nitrate loads to coastal waters reduces nitrate removal efficiency: Mechanism and implications for coastal eutrophication. Environ Microbiol, 15: 1492–1504

    Article  Google Scholar 

  • Luo Y, Arnold J, Allen P, Chen X. 2012. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrol Earth Syst Sci, 16: 1259–1267

    Article  Google Scholar 

  • Ly D K, Chui T F M. 2012. Modeling sewage leakage to surrounding groundwater and stormwater drains. Water Sci Technol, 66: 2659–2665

    Article  Google Scholar 

  • Mack U D, Feger K H, Gong Y, Stahr K. 2005. Soil water balance and nitrate leaching in winter wheat-summer maize double-cropping systems with different irrigation and N fertilization in the North China Plain. J Plant Nutr Soil Sci, 168: 454–460

    Article  Google Scholar 

  • Mallin M A, Cahoon L B. 2003. Industrialized animal production-a major source of nutrient and microbial pollution to aquatic ecosystems. Popul Environ, 24: 369–385

    Article  Google Scholar 

  • Marani M, Eltahir E, Rinaldo A. 2001. Geomorphic controls on regional baseflow. Water Resour Res, 37: 2619–2630

    Article  Google Scholar 

  • Mazvimavi D, Meijerink A, Savenije H, Stein A. 2005. Prediction of flow characteristics using multiple regression and neural networks: A case study in Zimbabwe. Phys Chem Earth, 30: 639–647

    Article  Google Scholar 

  • McCornick P. 2001. Plan for managing water reuse in the Amman-Zarqa Basin and Jordan Valley. Technical Report. Water Reuse Component Working Paper, Water Policy Support Project, Ministry of Water and Irrigation, Amman, Jordan

    Google Scholar 

  • McHale M R, McDonnell J J, Mitchell M J, Cirmo C P. 2002. A field-based study of soil water and groundwater nitrate release in an Adirondack forested watershed. Water Resour Res, 38: 2-1–2-16

    Article  Google Scholar 

  • McNab W W, Singleton M J, Moran J E, Esser B K. 2007. Assessing the impact of animal waste lagoon seepage on the geochemistry of an underlying shallow aquifer. Environ Sci Technol, 41: 753–758

    Article  Google Scholar 

  • Meisinger J, Delgado J. 2002. Principles for managing nitrogen leaching. J Soil Water Conserv, 57: 485–498

    Google Scholar 

  • Meredith E L, Kuzara S L. 2012. Identification and quantification of baseflow using carbon isotopes. Groundwater, 50: 959–965

    Article  Google Scholar 

  • Meyer S C. 2005. Analysis of baseflow trends in urban streams, northeastern Illinois, USA. Hydrogeol J, 13: 871–885

    Article  Google Scholar 

  • Min J, Shi W, Xing G, Zhang H, Zhu Z. 2011. Effects of a catch crop and reduced nitrogen fertilization on nitrogen leaching in greenhouse vegetable production systems. Nutr Cycl Agroecosys, 91: 31–39

    Article  Google Scholar 

  • Mitchell M J, Driscoll C T, Kahl J S, Likens G E, Murdoch P S, Pardo L H. 1996. Climatic control of nitrate loss from forested watersheds in the northeast United States. Environ Sci Technol, 30: 2609–2612

    Article  Google Scholar 

  • Mwakalila S, Feyen J, Wyseure G. 2002. The influence of physical catchment properties on baseflow in semi-arid environments. J Arid Environ, 52: 245–258

    Article  Google Scholar 

  • Nathan R, McMahon T. 1990. Evaluation of automated techniques for baseflow and recession analyses. Water Resour Res, 26: 1465–1473

    Article  Google Scholar 

  • Newbold J D, Herbert S, Sweeney B W, Kiry P, Alberts S J. 2010. Water quality functions of a 15-year-old riparian forest buffer system 1. J Am Water Resour As, 46: 299–310

    Article  Google Scholar 

  • Nolan B T. 2001. Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Groundwater, 39: 290–299

    Article  Google Scholar 

  • Norton-Brandão D, Scherrenberg S M, van Lier J B. 2013. Reclamation of used urban waters for irrigation purposes-a review of treatment technologies. J Environ Manage, 122: 85–98

    Article  Google Scholar 

  • Ouyang Y. 2012. Estimation of shallow groundwater discharge and nutrient load into a river. Ecol Eng, 38: 101–104

    Article  Google Scholar 

  • Owen M. 1991. Groundwater abstraction and river flows. Water Environ J, 5: 697–702

    Article  Google Scholar 

  • Owens L, Shipitalo M, Bonta J. 2008. Water quality response times to pasture management changes in small and large watersheds. J Soil Water Conserv, 63: 292–299

    Article  Google Scholar 

  • Pang Z, Yuan L, Huang T, Kong Y, Liu J, Li Y. 2013. Impacts of human activities on the occurrence of groundwater nitrate in an alluvial plain: A multiple isotopic tracers approach. J Earth Sci China, 24: 111–124

    Article  Google Scholar 

  • Papini R, Valboa G, Piovanelli C, Brandi G. 2007. Nitrogen and phosphorous in a loam soil of central Italy as affected by 6 years of different tillage systems. Soil Till Res, 92: 175–180

    Article  Google Scholar 

  • Parker D, Schulte D, Eisenhauer D. 1999. Seepage from earthen animal waste ponds and lagoons: An overview of research results and state regulations. T Asae, 42: 485–493

    Article  Google Scholar 

  • Partington D, Brunner P, Simmons C, Werner A, Therrien R, Maier H, Dandy G. 2012. Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. J Hydrol, 458: 28–39

    Article  Google Scholar 

  • Patil R H, Laegdsmand M, Olesen J E, Porter J R. 2012. Sensitivity of crop yield and N losses in winter wheat to changes in mean and variability of temperature and precipitation in Denmark using the FASSET model. Acta Agr Scand B-S P, 62: 335–351

    Google Scholar 

  • Phillips P, Bachman L. 1996. Hydrologic landscapes on the Delmarva Peninsula 1. drainage basin type and baseflow chemistry. Water Resour Bull, 32: 767–778

    Article  Google Scholar 

  • Phillips S W, Lindsey B D, Gaine V M. 2003. The influence of ground water on nitrogen delivery to the Chesapeake Bay. Technical Report. US Department of the Interior, United States Geological Survey

    Google Scholar 

  • Pionke H, Gburek W, Schnabel R, Sharpley A, Elwinger G. 1999. Seasonal flow, nutrient concentrations and loading patterns in streamflow draining an agricultural hill-land watershed. J Hydrol, 220: 62–73

    Article  Google Scholar 

  • Pionke H, Gburek W, Sharpley A, Schnabel R. 1996. Flow and nutrient export patterns for an agricultural hill-land watershed. Water Resour Res, 32: 1795–1804

    Article  Google Scholar 

  • Pionke H, Sharma M, Hirschberg K J. 1990. Impact of irrigated horticulture on nitrate concentrations in groundwater. Agr Ecosyst Environ, 32: 119–132

    Article  Google Scholar 

  • Price K. 2011. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Prog Phys Geog, 35: 465–492

    Article  Google Scholar 

  • Puckett L J. 1994. Nonpoint and point sources of nitrogen in major watersheds of the United States. Water Resources Investigations Report. No. 94-4001. United States Geological Survey

    Google Scholar 

  • Puustinen M, Tattari S, Koskiaho J, Linjama J. 2007. Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil Till Res, 93: 44–55

    Article  Google Scholar 

  • Qi Z, Helmers M J, Christianson R D, Pederson C H. 2011. Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers. J Environ Qual, 40: 1578–1585

    Article  Google Scholar 

  • Randall G, Iragavarapu T. 1995. Impact of long-term tillage systems for continuous corn on nitrate leaching to tile drainage. J Environ Qual, 24: 360–366

    Article  Google Scholar 

  • Randall G W, Mulla D J. 2001. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. J Environ Qual, 30: 337–344

    Article  Google Scholar 

  • Rankinen K, Salo T, Granlund K. 2008. Simulated nitrogen leaching, nitrogen mass field balances and their correlation on four farms in south-western Finland during the period 2000–2005. Agr Food Sci, 16: 387–406

    Article  Google Scholar 

  • Rasiah V, Armour J, Nelson P. 2013. Nitrate in shallow fluctuating groundwater under sugarcane: Quantifying the lateral export quantities to surface waters. Agr Ecosyst Environ, 180: 103–110

    Article  Google Scholar 

  • Reay W G, Gallagher D L, Simmons Jr G M. 1992. Groundwater discharge and its impact on surface water quality in a Chesapeake Bay Inlet. J Am Water Resour As, 28: 1121–1134

    Article  Google Scholar 

  • Reddy A G S, Kumar K, Rao D, Rao S. 2009. Assessment of nitrate contamination due to groundwater pollution in north eastern part of Anantapur district, A. P. India. Environ Monit Assess, 148: 463–476

    Article  Google Scholar 

  • Ribarova I, Ninov P, Cooper D. 2008. Modeling nutrient pollution during a first flood event using HSPF software: Iskar River case study, Bulgaria. Ecol Model, 211: 241–246

    Article  Google Scholar 

  • Ritter W F. 1986. Water-quality of agricultural coastal-plain watersheds. Agr Wastes, 16: 201–216

    Article  Google Scholar 

  • Rivett M O, Ellis P A, Mackay R. 2011. Urban groundwater baseflow influence upon inorganic river-water quality: The River Tame headwaters catchment in the city of Birmingham, UK. J Hydrol, 400: 206–222

    Article  Google Scholar 

  • Rodríguez-Blanco M, Taboada-Castro M, Taboada-Castro M. 2013. Contrasting dynamics of nitrate and Kjeldahl nitrogen in a stream draining a rural catchment in Galicia (NW Spain). Commun Soil Sci Plan, 44: 415–421

    Article  Google Scholar 

  • Rumsey C A, Miller M P, Susong D D, Tillman F D, Anning D W. 2015. Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin. J Hydrol, 4: 91–107

    Google Scholar 

  • Runkel R L, Crawford C G, Cohn T A. 2004. Load estimator (LOADEST): A fortran program for estimating constituent loads in streams and rivers. Technical Report. No. 4-A5. U.S. Geological Survey Techniques Methods. United States Geological Survey

    Google Scholar 

  • Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126: 543–562

    Article  Google Scholar 

  • Rutsch M, Rieckermann J, Cullmann J, Ellis J B, Vollertsen J, Krebs P. 2008. Towards a better understanding of sewer exfiltration. Water Res, 42: 2385–2394

    Article  Google Scholar 

  • Sainju U M. 1997. Winter cover crops for sustainable agricultural systems: influence on soil properties, water quality, and crop yields. Hortscience, 32: 21–28

    Google Scholar 

  • Sainju U M, Singh B P. 2001. Tillage, cover crop, and kill-planting date effects on corn yield and soil nitrogen. Agron J, 93: 878–886

    Article  Google Scholar 

  • Sapkota T B, Askegaard M, Lægdsmand M, Olesen J E. 2012. Effects of catch crop type and root depth on nitrogen leaching and yield of spring barley. Field Crop Res, 125: 129–138

    Article  Google Scholar 

  • Schilling K, Zhang Y K. 2004. Baseflow contribution to nitrate-nitrogen export from a large, agricultural watershed, USA. J Hydrol, 295: 305–316

    Article  Google Scholar 

  • Schilling K E. 2002. Chemical transport from paired agricultural and restored prairie watersheds. J Environ Qual, 31: 1184–1193

    Article  Google Scholar 

  • Schilling K E, Wolter C F. 2001. Contribution of baseflow to nonpoint source pollution loads in an agricultural watershed. Groundwater, 39: 49–58

    Article  Google Scholar 

  • Schipper L A, Vojvodić-Vuković M. 2001. Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall. Water Res, 35: 3473–3477

    Article  Google Scholar 

  • Schmidt E J, Schulze R. 1989. The Dehoek/Ntambamhlope Hydrological Research Catchments, 1974 to 1989. Agricultural Catchments Research Unit Report. No. 33. University of Natal, Department of Agricultural Engineering

    Google Scholar 

  • Schwartz S S. 2007. Automated algorithms for heuristic baseflow separation. J Am Water Resour As, 43: 1583–1594

    Article  Google Scholar 

  • Schweigert P, Pinter N, van der Ploeg R R. 2004. Regression analyses of weather effects on the annual concentrations of nitrate in soil and groundwater. J Plant Nutr Soil Sci, 167: 309–318

    Article  Google Scholar 

  • Sharpley A N, Kleinman P J, Heathwaite A L, Gburek W J, Folmar G J, Schmidt J P. 2008. Phosphorus loss from an agricultural watershed as a function of storm size. J Environ Qual, 37: 362–368

    Article  Google Scholar 

  • Sieling K, Kage H. 2006. N balance as an indicator of N leaching in an oilseed rape-winter wheat-winter barley rotation. Agr Ecosyst Environ, 115: 261–269

    Article  Google Scholar 

  • Sikka A, Samra J, Sharda V, Samraj P, Lakshmanan V. 2003. Low flow and high flow responses to converting natural grassland into bluegum (Eucalyptus globulus) in Nilgiris watersheds of South India. J Hydrol, 270: 12–26

    Article  Google Scholar 

  • Singh B, Sekhon G. 1979. Nitrate pollution of groundwater from farm use of nitrogen fertilizers—A review. Agric Environ, 4: 207–225

    Article  Google Scholar 

  • Słomczyńska B, Słomczyński T. 2004. Physico-chemical and toxicological characteristics of leachates from MSW landfills. Pol J Environ Stud, 13: 627–637

    Google Scholar 

  • Sloto R A, Crouse M Y. 1996. Hysep, a computer program for streamflow hydrograph separation and analysis. Technical Report. No. 96–4040. United States Geological Survey

    Google Scholar 

  • Smahi D, Fekri A, El Hammoumi O. 2013. Environmental impact of casablanca landfill on groundwater auality, Morocco. Int J Geosci, 4: 202–211

    Article  Google Scholar 

  • Smakhtin V U. 2001. Low flow hydrology: A review. J Hydrol, 240: 147–186

    Article  Google Scholar 

  • Stigter T, Almeida P, Carvalho Dill A, Ribeiro L. 2005. Influence of irrigation on groundwater nitrate concentrations in areas considered to have low vulnerability to contamination. Groundwater Hum Dev, 6: 69–85

    Google Scholar 

  • Stoddard C, Grove J H, Coyne M S, Thom W O. 2005. Fertilizer, tillage, and dairy manure contributions to nitrate and herbicide leaching. J Environ Qual, 34: 1354–1362

    Article  Google Scholar 

  • Stuart M, Chilton P, Kinniburgh D, Cooper D. 2007. Screening for long-term trends in groundwater nitrate monitoring data. Q J Eng Geol Hydroge, 40: 361–376

    Article  Google Scholar 

  • Stuart M, Gooddy D, Bloomfield J, Williams A. 2011. A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci Total Environ, 409: 2859–2873

    Article  Google Scholar 

  • Sun G, Zhou G, Zhang Z, Wei X, McNulty S G, Vose J M. 2006. Potential water yield reduction due to forestation across China. J Hydrol, 328: 548–558

    Article  Google Scholar 

  • Tallaksen L. 1995. A review of baseflow recession analysis. J Hydrol, 165: 349–370

    Article  Google Scholar 

  • Tang C, Chen J, Shindo S, Sakura Y, Zhang W, Shen Y. 2004. Assessment of groundwater contamination by nitrates associated with wastewater irrigation: A case study in Shijiazhuang region, China. Hydrol Process, 18: 2303–2312

    Article  Google Scholar 

  • Thorne P S, Burkholder J, Libra B, Weyer P, Heathcote S, Kolpin D, Wichman M. 2007. Impacts of waste from concentrated animal feeding operations on water quality. Environ Health Persp, 115: 308–312

    Article  Google Scholar 

  • Tomer M, Burkart M. 2003. Long-term effects of nitrogen fertilizer use on ground water nitrate in two small watersheds. J Environ Qual, 32: 2158–2171

    Article  Google Scholar 

  • Tonitto C, David M, Drinkwater L. 2006. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agr Ecosyst Environ, 112: 58–72

    Article  Google Scholar 

  • Valkama E, Lemola R, Känkänen H, Turtola E. 2015. Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. Agr Ecosyst Environ, 203: 93–101

    Article  Google Scholar 

  • Van Es H M, Sogbedji J M, Schindelbeck R R. 2006. Effect of manure application timing, crop, and soil type on nitrate leaching. J Environ Qual, 35: 670–679

    Article  Google Scholar 

  • Vanni M J, Renwick W H, Headworth J L, Auch J D, Schaus M H. 2001. Dissolved and particulate nutrient flux from three adjacent agricultural watersheds: A five-year study. Biogeochemistry, 54: 85–114

    Article  Google Scholar 

  • Vogel R M, Kroll C N. 1992. Regional geohydrologic-geomorphic relationships for the estimation of low-flow statistics. Water Resour Res, 28: 2451–2458

    Article  Google Scholar 

  • Wakida F T, Lerner D N. 2005. Non-agricultural sources of groundwater nitrate: A review and case study. Water Res, 39: 3–16

    Article  Google Scholar 

  • Wakida F T, Lerner D N. 2006. Potential nitrate leaching to groundwater from house building. Hydrol Process, 20: 2077–2081

    Article  Google Scholar 

  • Wang H, Ju X, Wei Y, Li B, Zhao L, Hu K. 2010. Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain. Agr Water Manage, 97: 1646–1654

    Article  Google Scholar 

  • Wang J, Baerenklau K A. 2015. How inefficient are nutrient application limits? A dynamic analysis of groundwater nitrate pollution from concentrated animal feeding operations. Appl Econ Perspect Policy, 37: 130–150

    Article  Google Scholar 

  • Wang Y, Liu X, Li Y, Liu F, Shen J, Li Y, Ma Q, Yin J, Wu J. 2015. Rice agriculture increases baseflow contribution to catchment nitrate loading in subtropical central China. Agr Ecosyst Environ, 214: 86–95

    Article  Google Scholar 

  • Ward M H, Kilfoy B A, Weyer P J, Anderson K E, Folsom A R, Cerhan J R. 2010. Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiology, 21: 389–395

    Article  Google Scholar 

  • Wick K, Heumesser C, Schmid E. 2012. Groundwater nitrate contamination: factors and indicators. J Environ Manage, 111: 178–186

    Article  Google Scholar 

  • Wittenberg H. 1999. Baseflow recession and recharge as nonlinear storage processes. Hydrol Process, 13: 715–726

    Article  Google Scholar 

  • Wolf L, Held I, Hötzl H. 2004. Impact of leaky sewers on groundwater quality. Acta Hydroch Hydrob, 32: 361–373

    Article  Google Scholar 

  • Wriedt G, Spindler J, Neef T, Meißner R, Rode M. 2007. Groundwater dynamics and channel activity as major controls of in-stream nitrate concentrations in a lowland catchment system? J Hydrol, 343: 154–168

    Article  Google Scholar 

  • Wu C, Deng G C, Li Y, Li Z Y, Yang S H. 2012. Study on the risk pattern of non-point source pollution using GIS technology in the Dianchi Lake Watershed. Adv Mater Res, 356: 771–776

    Article  Google Scholar 

  • Yevenes M A, Mannaerts C M. 2011. Seasonal and land use impacts on the nitrate budget and export of a mesoscale catchment in Southern Portugal. Agr Water Manage, 102: 54–65

    Article  Google Scholar 

  • Young R A, Onstad C, Bosch D, Anderson W. 1989. AGNPS: A nonpoint- source pollution model for evaluating agricultural watersheds. J Soil Water Conserv, 44: 168–173

    Google Scholar 

  • Zeng Y, Hong H, Tian Y, Huang X, Zhou L. 2010. Assessment of impact of intensive livestock cultivation on water environment in mountain and hilly areas of South China (in Chinese). Water Res Prot, 26: 45–49

    Google Scholar 

  • Zhang Y K, Schilling K. 2006. Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change. J Hydrol, 324: 412–422

    Article  Google Scholar 

  • Zhang Y, Liu X, Zhang F, Ju X, Zou G, Hu K. 2006. Spatial and temporal variation of atmospheric nitrogen deposition in the North China Plain. Acta Ecol Sin, 26: 1633–1638

    Article  Google Scholar 

  • Zhao C, Hu C, Huang W, Sun X, Tan Q, Di H. 2010. A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China. J Soil Sediment, 10: 9–17

    Article  Google Scholar 

  • Zhu Q, Schmidt J P, Buda A R, Bryant R B, Folmar G J. 2011. Nitrogen loss from a mixed land use watershed as influenced by hydrology and seasons. J Hydrol, 405: 307–315

    Article  Google Scholar 

  • Zhu Y, Day R L. 2009. Regression modeling of streamflow, baseflow, and runoff using geographic information systems. J Environ Manage, 90: 946–953

    Article  Google Scholar 

  • Zhu Y, Fox R, Toth J. 2003. Tillage effects on nitrate leaching measured by pan and wick lysimeters. Soil Sci Soc Am J, 67: 1517–1523

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Lu, J. Contribution of baseflow nitrate export to non-point source pollution. Sci. China Earth Sci. 59, 1912–1929 (2016). https://doi.org/10.1007/s11430-016-5329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5329-1

Keywords

Navigation