Skip to main content
Log in

Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. Over Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Based on numerical simulation, this study explored the characteristics and interactions of surface sensible heating and atmospheric latent heating over the main part of the Tibetan Plateau, i.e., terrain at elevations >2 km in summer. The impacts of these two types of heating on local vertical motion and monsoonal meridional circulation were compared. Theoretical analysis and numerical experimentation demonstrated that by changing the configuration of the upper-tropospheric air temperature and circulation, the two types of heating could generate both minimum absolute vorticity and abnormal potential vorticity forcing near the tropopause, enhance the meridional circulation of the Asian summer monsoon, and produce an eastward- propagating Rossby wave train within the mid-latitude westerly flow. Consequently, the manifestations of these features were shown to influence the circulation of the Northern Hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bougeault P, Lacarrere P. 1989. Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Wea Rev, 117: 1872–1890

    Article  Google Scholar 

  • Chang C P. 2004. East Asian Monsoon. Newsesy: World Scientific. 564

    Book  Google Scholar 

  • Chen F, Dudhia J. 2001. Coupling an advanced land-surface hydrology model with the Penn Statr-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Wea Rev, 129: 569–585

    Article  Google Scholar 

  • Chou M D, Suarez M J. 1999. A shortwave radiation parameterization for atmospheric studies. NASA Tech Memo, 15: 40

    Google Scholar 

  • Grell G, Devenyi D. 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett, 29: 31–38

    Article  Google Scholar 

  • He B, Wu G X, Liu Y M, Bao Q. 2015. Astronomical and hydrological perspective of mountain impacts on the asian summer monsoon. Sci Rep, 5: 17586, doi: 10.1038/srep17586

    Article  Google Scholar 

  • Held I M, Hou A Y. 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J Atmos Sci, 37: 515–533

    Article  Google Scholar 

  • Hong S Y, Lim J. 2006. The WRF Single-Moment 6-Class microphysics scheme (WSM6). J Korean Meteorol, 42: 129–151

    Google Scholar 

  • Kim E J, Hong S Y. 2010. Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J Geophys Res, 115: D19118

    Article  Google Scholar 

  • Liu J, Wang Y, Wang A, Wang Y, Wang A, Hideaki O, Abbott R J. 2006. Radiation and diversification within the Ligularia-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Mol Phylogenet Evol, 38: 31–49

    Article  Google Scholar 

  • Luo H, Yanai M. 1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon Wea Rev, 112: 966–989

    Article  Google Scholar 

  • Mlawer E J, Taubman S J, Brown P D. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM a validated correlated-k model for the long wave. J Geophys Res, 102: 16663–16682

    Article  Google Scholar 

  • Plumb R A, Hou A Y. 1992. The response of a zonally symmetric atmosphere to subtropical thermal forcing: Threshold behavior. J Atmos Sci, 49: 1790–1799

    Article  Google Scholar 

  • Reynolds R W, Smith T M, Liu C, Liu C, Chelton D B, Casey K S, Schlax M G. 2007. Daily high-resolution-blended analyses for sea surface temperature. J Clim, 20: 5473–5496

    Article  Google Scholar 

  • Schneider E K, Lindzen R S. 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part I: Linearized calculations. J Atmos Sci, 34: 263–279

    Article  Google Scholar 

  • Schneider E K. 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J Atmos Sci, 34: 280–296

    Article  Google Scholar 

  • Schneider E K. 1987. A simplified model of the modified Hadley circulation. J Atmos Sci, 44: 3311–3328

    Article  Google Scholar 

  • Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Duda M G, Huang X Y, Wang W, Powers J G. 2008. A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR

    Google Scholar 

  • Smith E, Shi L. 1992. Surface forcing of the infrared cooling profile over the Tibetan plateau. Part I: Influence of relative longwave radiative heating at high altitude. J Atmos Sci, 49: 805–822

    Article  Google Scholar 

  • Wang B. 2006. The Asian Monsoon. New York: Springer/Praxis Publishing. 787

    Google Scholar 

  • Wang Z Q, Duan A M, Wu G X. 2014. Impacts of boundary layer parameterization schemes and air-sea coupling on WRF simulation of the East Asian summer monsoon. Sci China Earth Sci, 57: 1480–1493

    Article  Google Scholar 

  • Wang Z Q, Duan A M, Wu G X. 2014. Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: Case studies using the WRF model. Clim Dyn, 42: 2885–2898

    Article  Google Scholar 

  • Wu G X, Liu Y M. 2000. Thermal adaptation, over flow, dispersion and subtropical anticyclone. I. Thermal adatation and over flow (in Chinese). Chin J Atmos Sci, 24: 433–446

    Google Scholar 

  • Wu G X, Duan A M, Liu Y M, Mao J Y, Ren R C, Bao Q, He B, Liu B, Hu W T. 2015a. Recent progress in the study of Tibetan Plateau climate dynamics. National Sci Rev, 2: 100–116

    Article  Google Scholar 

  • Wu G X, He B, Liu Y M, Bao Q, Ren R C. 2015b. Location and variation of the summertime upper troposphere temperature maximum over South Asia. Clim Dyn, 45: 1–18

    Article  Google Scholar 

  • Wu G X, Li W P, Guo H, Liu H, Xue J X, Wang Z Z. 1997. The sensible heat driven air-pump of the Tibetan Plateau and the Asian summer monsoon. Collection for the Memory of Zhao Jiuzhang (in Chinese). Beijing: Science Press

    Google Scholar 

  • Wu G X, Liu Y M, He B, Bao Q, Duan A, Jin F. 2012. Thermal controls on the Asian Summer Monsoon. Sci Rep, 2: 404

    Google Scholar 

  • Wu G, Liu Y, Wang T, Liu X, LI W, Wang Z, Zhang Q, Duan, A, Liang X. 2007. The influence of the mechanical and thermal forcing of the Tibetan Plateau on the Asian climate. J Hydrometeorl, 8: 770–789

    Article  Google Scholar 

  • Xu X, Lu C, Shi X, Ding Y. 2010. Large-scale topography of China: A factor for the seasonal progression of the Meiyu rainband. J Geophys Res, 115: D02110

    Google Scholar 

  • Xu X, Lu C, Shi X, Gao S. 2008a. World water tower: An atmospheric perspective. Geophys Res Lett, 35: L20815

    Article  Google Scholar 

  • Xu X, Shi X, Wang Y, Shi X. 2008b. Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China. Meteorol Atmos Phys, 100: 217–231

    Article  Google Scholar 

  • Yanai M, Li C, Song Z. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteor Soc Japan, 70: 319–351

    Google Scholar 

  • Yanai M, Wu G. 2006. Effects of the Tibetan Plateau. Asian Monsoon, 29: 513–549

    Article  Google Scholar 

  • Yang H W, Wang B, Wang B. 2012. Reduction of systematic biases in regional climate downscaling through ensemble forcing. Clim Dyn, 25: 155–170

    Google Scholar 

  • Ye D Z and Gao Y X, 1979. Tibetan Plateau Meteorology (in Chinese). Beijing: Science Press

    Google Scholar 

  • Zhao P, Chen L X. 2001. Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation. Adv Atmos Sci, 18: 106–116

    Article  Google Scholar 

  • Zhou X J, Zhao P, Chen J M, Chen L X, Li W P. 2009. The impact of the thermal forcing of the Tibetan Plateau on the climate of the northern hemisphere. Sci China Ser D-Earth Sci, 52: 1679–1693

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZiQian Wang or YiMin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Zhuo, H., Wang, Z. et al. Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. Over Tibetan Plateau. Sci. China Earth Sci. 59, 1996–2008 (2016). https://doi.org/10.1007/s11430-016-5328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5328-2

Keywords

Navigation