Skip to main content
Log in

Characterization of the negative carbon isotope shift in segment C2, its global implications as a harbinger of OAE1a

  • Research Paper
  • Special Topic: Cretaceous greenhouse palaeoclimate and sea-level changes
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Lower Cretaceous C-isotope records show intermittent negative/positive spikes, and consistent patterns of coeval chemostratigraphic curves thus document shifts that signal simultaneous responses of temporal changes in the global carbon reservoir. The standard pattern registered by the δ 13Corg and δ 13Ccarb in Lower Aptian sediments includes distinct isotope segments C1 to C8 (Menegatti et al., 1998). In the El Pui section, Organyà Basin, Spain, C-isotope segment C2 is the longest interval preceding segments C3–C6 associated with oceanic anoxic event 1a (OAE 1a), and reveals a distinct negative shift of ~1.8‰ to ~2.23‰ defining the C-isotope pattern within that interval. Total inorganic carbon (TIC), total organic carbon (TOC), δ 13Corg, microfacies, n-alkanes show no difference before, during, or after the negative inflection. The biomarkers indicate that organic matter (OM) mainly originates from algal/microbial sources because short-chain length homologues (≤nC19) dominate. nC20 through nC25 indicate some contribution from aquatic vegetation, but little from higher plants (>nC25), as also suggested by the terrestrial/aquatic ratio of n-alkanes or (TAR) = [(nC27+nC29+nC31)/(nC15+nC17+nC19)] (averages 0.085). We suggest that conjoint pulses of contemporaneous LIPs (Ontong Java) and massive explosive volcanism in northeast Asia, the Songliao Basin (SB-V), best conform to plausible causes of the negative intra-C2 carbon isotopic excursion (CIE) at that time. Because of its apparent common occurrence the intra-C2 inflection could be a useful marker harbinger to the more pronounced CIE C3, the hallmark of OAE1a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando A, Kaiho K, Kawahata H, Kakegawa T. 2008. Timing and magnitude of early Aptian extreme warming: Unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean. Paleogeogr Paleoclimatol Paleoecol, 260: 463–476

    Article  Google Scholar 

  • Asper V L, Deuser W G, Knauer G A, Lohrenz S E. 1992. Rapid coupling of sinking particle fluxes between surface and deep ocean waters. Nature, 357: 670–672

    Article  Google Scholar 

  • Bauer J E, Williams P M, Druffel E R M. 1992. 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature, 357: 667–670

    Article  Google Scholar 

  • Bernaus J M, Arnaud-Vanneau A, Caus E. 2002. Stratigraphic distribution of Valanginian-Early Aptian shallow-water benthic foraminifera and algae, and depositional sequences of a carbonate platform in a tectonically-controlled basin: The Organyà Basin, Pyrenees, Spain. Cretac Res, 23: 25–36

    Article  Google Scholar 

  • Bernaus J M, Arnaud-Vanneau A, Caus E. 2003. Carbonate platform sequence stratigraphy in a rapidly subsiding area: The Late Barremian-Early Aptian of the Organyà Basin, Spanish Pyrenees. Sediment Geol, 159: 177–201

    Article  Google Scholar 

  • Berástegui X, Garcia-Senz J M, Losantos M. 1990. Tecto-sedimentary evolution of the Organya extensional basin (central south Pyrenean unit, Spain) during the Lower Cretaceous. Bull de la Societe Geologique de France, VI: 251–264

    Article  Google Scholar 

  • Bjørlykke K. 2010. Petroleum Geoscience: From Sedimentary Environments to Rock Physics. Berlin: Springer Verlag. 509

    Book  Google Scholar 

  • Blumer M, Guillard R R L, Chase T. 1971. Hydrocarbons of marine phytoplankton. Mar Biol, 8: 183–189

    Article  Google Scholar 

  • Bourbonniere R A, Meyers P A. 1996. Sediment geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol Oceanogr, 41: 352–359

    Article  Google Scholar 

  • Brocks J J, Love G D, Summons R E, Knoll A H, Logan G A, Bowden S A. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437: 866–870

    Article  Google Scholar 

  • Brooks J D, Gould K, Smith J W. 1969. Isoprenoid hydrocarbons in coal and petroleum. Nature, 222: 257–259

    Article  Google Scholar 

  • Capote R, Muñoz J A, Simón J L, Liesa C L, Arlegui L E. 2002. Alpine tectonics I: The Alpine System North of the Betic Cordillera. In: Gibbons W, Moreno T, eds. The Geology of Spain. Geol Soc London. 367–400

    Google Scholar 

  • Caus E, García-Senz J, Rodés D, Simó A. 1990. Stratigraphy of the Lower Cretaceous (Berriasian-Barremian) sediments in the Organyà Basin, Pyrenees, Spain. Cretac Res, 11: 313–320

    Article  Google Scholar 

  • Cranwell P A. 1973. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biol, 3: 259–265

    Article  Google Scholar 

  • Cranwell P. 1982. Lipids of aquatic sediments and sedimenting particulates. Prog Lipid Res, 21: 271–308

    Article  Google Scholar 

  • Cranwell P A. 1984. Lipid geochemistry of sediments from Upton Broad, a small productive lake. Org Geochem, 7: 25–37

    Article  Google Scholar 

  • Cranwell P A, Eglinton G, Robinson N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments II. Org Geochem, 11: 513–527

    Article  Google Scholar 

  • de Gea G A, Castro J M, Aguado R, Ruiz-Ortiz P A, Company M. 2003. Lower Aptian carbon isotope stratigraphy from a distal carbonate shelf setting: The Cau section, Prebetic zone, SE Spain. Paleogeogr Paleoclimatol Paleoecol, 200: 207–219

    Article  Google Scholar 

  • Dinarès-Turell J, García-Senz J. 2000. Remagnetization of Lower Cretaceous limestones from the southern Pyrenees and relation to the Iberian plate geodynamic evolution. J Geophys Res, 105: 19405–19418

    Article  Google Scholar 

  • Didyk B M, Simoneit B R T, Brassell S C, Eglinton G. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272: 216–222

    Article  Google Scholar 

  • Duque-Botero F, Maurrasse F. 2005. Cyanobacterial productivity, variations in the organic carbon, and facies of the Indidura Formation (Cenomanian-Turonian), Northeastern Mexico. J Iberian Geol, 3: 85–98

    Google Scholar 

  • Eglinton G, Hamilton R J. 1967. Leaf epicuticular waxes. Science, 156: 1322–1335

    Article  Google Scholar 

  • Erba E, ET Channell J, Claps M, Jones C, Larson R, Opdyke B, Premoli Silva I, Riva A, Salvini G, Torricelli S. 1999. Integrated stratigraphy of the Cismon Apticore (Southern Alps, Italy): A reference section for the Barremian-Aptian interval at low latitudes. J Foram Res, 29: 371–391

    Google Scholar 

  • Erba E. 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar Micropaleontol, 52: 85–106

    Article  Google Scholar 

  • Erba E, Duncan R A, Bottini C, Tiraboschi D, Weissert H, Jenkyns H C, Malinverno A. 2015. Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism. In: Neal C R, Sager W W, Sano T, Erba, eds. The Origin, Evolution, and Environmental Impact of Oceanic Large Igneous Provinces. Geol Soc Am Spec Paper, 511: 35

    Google Scholar 

  • Ficken K J, Li B, Swain D L, Eglinton G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 31: 745–749

    Article  Google Scholar 

  • Forster A, Sturt H, Meyers P A, Shipboard Scientific Party. 2004. Molecular biogeochemistry of Cretaceous black shales from the Demerara Rise: Preliminary shipboard results from Sites 1257 and 1258, Leg 207. In: Erbacher J, Mosher D C, Malone M J, eds. Proc ODP, Init Repts, 207. College Station, TX (Ocean Drilling Program). 1–22

    Google Scholar 

  • Gaona-Narvaez T, Maurrasse F J M R, Moreno-Bedmar J A. 2013a. Stable carbon-isotope stratigraphy and ammonite biochronology at Madotz, Navarra, northern Spain: Implications for the timing and duration of oxygen depletion during OAE-1a. Cretac Res, 40: 143–157

    Article  Google Scholar 

  • Gaona-Narvaez T, Maurrasse F J M R, Etayo-Serna F. 2013b. Geochemistry, paleoenvironments and timing of Aptian organic-rich beds of Paja Formation (Curití, Eastern Cordillera, Colombia). In: Bojar A V, Melinte-Dobrinescu M C, Smit J, eds. Isotopic Studies in Cretaceous Research. Geol Soc London Special Publ, 382: 6

    Google Scholar 

  • García Senz J. 2002. Cuencas extensivas del Cretácico Inferior en los Pirineos centrales. Formación y subsecuente inversion. Dissertation for Doctoral Degree. Barcelona: Universitat de Barcelona. 310

    Google Scholar 

  • Giger W, Schaffner C, Wakeham S G. 1980. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland. Geochim Cosmochim Acta, 44: 119–129

    Article  Google Scholar 

  • Godet A, Bodin S, Follmi K, Vermeulen J, Gardin S, Fiet N, Adatte T, Berner Z, Stuben D, Vandeschootbrugge B. 2006. Evolution of the marine stable carbon-isotope record during the early Cretaceous: A focus on the late Hauterivian and Barremian in the Tethyan realm. Earth Planet Sci Lett, 242: 254–271

    Article  Google Scholar 

  • Golonka J. 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381: 235–273

    Article  Google Scholar 

  • Gong Z, van Hinsbergen D J J, Vissers R L M, Dekkers M J. 2009. Early Cretaceous syn-rotational extension in the Organyà Basin—New constraints on the palinspastic position of Iberia during its rotation. Tectonophysics, 473: 312–323

    Article  Google Scholar 

  • Guy R D, Fogel M L, Berry J A. 1993. Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol, 101: 37–47

    Article  Google Scholar 

  • Haq B U, Hardenbol J, Vail P R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156–1167

    Article  Google Scholar 

  • Heldt M, Bachmann M, Lehmann J. 2008. Microfacies, biostratigraphy, and geochemistry of the hemipelagic Barremian-Aptian in north-central Tunisia: Influence of the OAE 1a on the southern Tethys margin. Paleogeogr Paleoclimatol Paleoecol, 261: 246–260

    Article  Google Scholar 

  • Holtvoeth J, Vogel H, Wagner B, Wolff G A. 2010. Lipid biomarkers in Holocene and glacial sediments from ancient Lake Ohrid (Macedonia, Albania). Biogeosciences, 7: 3473–3489

    Article  Google Scholar 

  • Huber B T, Hodell D A, Hamilton C P. 1995. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol Soc Am Bull, 107: 1164–1191

    Article  Google Scholar 

  • Jahren A H, Arens N C. 1998. Methane hydrate dissociation implicated in Aptian OAE events. Geol Soc America Abs Progr, 30: 53

    Google Scholar 

  • Kuhnt W, Moullade M, Masse J P, Erlenkeuser H. 1998. Carbon-isotope stratigraphy of the lower Aptian historical stratotype at Cassis-La Bédoule (SE France). Géologie Méditerranéenne, 25: 63–79

    Google Scholar 

  • Larson R L. 1991. Geological consequences of superplumes. Geology, 19: 963–966

    Article  Google Scholar 

  • Li J, Hu X, Zhao K, Cai Y, Sun T. 2016. Paleoceanographic evolution and chronostratigraphy of the Aptian Oceanic Anoxic Event 1a (OAE1a) to oceanic red bed 1 (ORB1) in the Gorgo a Cerbara section (central Italy). Cretac Res, 66: 115–128

    Article  Google Scholar 

  • Li Y X, Bralower T J, Montañez I P, Osleger D A, Arthur M A, Bice D M, Herbert T D, Erba E, Premoli Silva I. 2008. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120 Ma). Earth Planet Sci Lett, 271: 88–100

    Article  Google Scholar 

  • Martínez R. 1982. Ammonoideos cretácicos del Prepirineo de la provincia de Lleida. Dissertation for Doctoral Degree. Barcelona: Publicaciones de la Universitat Autónoma de Barcelona, 17: 197

    Google Scholar 

  • Mead R, Xu Y, Chong J, Jaffé R. 2005. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org Geochem, 36: 363–370

    Article  Google Scholar 

  • Méhay S, Keller C E, Bernasconi S M, Weissert H, Erba E, Bottini C, Hochuli P A. 2009. A volcanic CO2 pulse triggered the cretaceous oceanic anoxic event 1a and a biocalcification crisis. Geology, 37: 819–822

    Article  Google Scholar 

  • Menegatti A P, Weissert H, Brown R S, Tyson R V, Farrimond P, Strasser A, Caron M. 1998. High-resolution δ 13C stratigraphy through the Early Aptian “Livello selli” of the Alpine tethys. Paleoceanography, 13: 530–545

    Article  Google Scholar 

  • Millán M I, Weissert H J, Fernández-Mendiola P A, García-Mondéjar J. 2009. Impact of Early Aptian carbon cycle perturbations on evolution of a marine shelf system in the Basque-Cantabrian Basin (Aralar, N Spain). Earth Planet Sci Lett, 287: 392–401

    Article  Google Scholar 

  • Moreno-Bedmar J A. 2010. Ammonits de l’Aptià inferior de la península Ibèrica. Biostratigrafia i Aportacions a l’estudi del Oceanic Anoxic Event 1a. Barcelona: Universitat de Barcelona. 331

    Google Scholar 

  • Moullade M, Kuhnt W, Bergen J A, Masse J P, Tronchetti G. 1998. Correlation of biostratigraphic and stable isotope events in the Aptian historical stratotype of La Bédoule (southeast France). Comptes Rendus de l'Académie des Sci-Ser IIA-Earth Planet Sci, 327: 693–698

    Google Scholar 

  • Moullade M, Tronchetti G, Granier B, Bornemann A, Kuhnt W, Lorenzen J. 2015. High-resolution integrated stratigraphy of the OAE1a and enclosing strata from core drillings in the Bedoulian stratotype (Roquefort-La Bédoule, SE France). Cretac Res, 56: 119–140

    Article  Google Scholar 

  • Muñóz J A, Puig de Fábregas C, Fontboté J M. 1984. Orógenos alpinos. In: Ríos L J J M, ed. El Pirineo. Inst Geol Min España. Geología de España, 2: 161–205

    Google Scholar 

  • Najarro M, Rosales I, Moreno-Bedmar J A, de Gea G A, Barrón E, Company M, Delanoy G. 2011. High-resolution chemo- and biostratigraphic records of the Early Aptian oceanic anoxic event in Cantabria (N Spain): Palaeoceanographic and palaeoclimatic implications. Paleogeogr Paleoclimatol Paleoecol, 299: 137–158

    Article  Google Scholar 

  • Papp D C, Cociuba I, Lazăr D F. 2013. Carbon and oxygen-isotope stratigraphy of the Early Cretaceous carbonate platform of Pădurea Craiului (Apuseni Mountains, Romania): A chemostratigraphic correlation and paleoenvironmental tool. Appl Geochem, 32: 3–16

    Article  Google Scholar 

  • Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide—II, Biomarkers and isotopes in Petroleum Systems and Earth History. Cambridge: Cambridge University Press. 475–1155

    Google Scholar 

  • Peybernès B, Souquet P. 1973. Biostratigraphie des marnes noires de l'Aptien–Albien de la zone sud-pyrénéenne. C R Acad Sci Paris, 276 (Series D): 2501–2504

    Google Scholar 

  • Peybernès B. 1976. Le Jurassique et le Crétacé inférieur des Pyrénées francoespagnoles. Thèse de doctorat Laboratoire de Géologie. Toulouse: Université Paul Sabatier. 459

    Google Scholar 

  • Phelps R M. 2011. Middle-Hauterivian to Lower-Campanian sequence stratigraphy and stable isotope geochemistry of the comanche platform, South Texas. Doctoral Dissertation. Austin: University Texas. 227

    Google Scholar 

  • Phelps R M, Kerans C, Da-Gama R O B P, Jeremiah J, Hull D, Loucks R G. 2015. Response and recovery of the Comanche carbonate platform surrounding multiple Cretaceous oceanic anoxic events, northern Gulf of Mexico. Cretac Res, 54: 117–144

    Article  Google Scholar 

  • Quintana L, Pulgar J A, Alonso J L. 2015. Displacement transfer from borders to interior of a plate: A crustal transect of Iberia. Tectonophysics, 663: 378–398

    Article  Google Scholar 

  • Reboulet S, Hoedemaeker P J, Aguirre-Urreta M B, Alsen P, Atrops F, Baraboshkin E Y, Company M, Delanoy G, Dutour Y, Klein J, Latil J L, Lukeneder A, Mitta V, Mourgues F A, Ploch I, Raisossadat N, Ropolo P, Sandoval J, Tavera J M, Vasicek Z, Vermeulen J. 2006. Report on the 2nd international meeting of the IUGS lower Cretaceous ammonite working group, the “Kilian Group” (Neuchâtel, Switzerland, 8 September 2005). Cretac Res, 27: 712–715

    Article  Google Scholar 

  • Reboulet S, Rawson P F, Moreno-Bedmar J A, Aguirre-Urreta M B, Barragán R, Bogomolov Y, Company M, González-Arreola C, Stoyanova V I, Lukeneder A, Matrion B, Mitta V, Randrianaly H, Va_si_cek Z, Baraboshkin E J, Bert D, Bersac S, Bogdanova T N, Bulot L G, Latil J L, Mikhailova I A, Ropolo P, Szives O. 2012. Report on the 4th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the “Kilian Group” (Dijon, France, 30th August 2010). Cret Res, 32: 786–793

    Article  Google Scholar 

  • Rieley G, Collier R J, Jones D M, Eglinton G. 1991a. The biogeochemistry of Ellesmere Lake, U K—I: Source correlation of leaf wax inputs to the sedimentary lipid record. Org Geochem, 17: 901–912

    Article  Google Scholar 

  • Rieley G, Collier R J, Jones D M, Eglinton G, Eakin P A, Fallick A E. 1991b. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature, 352: 425–427

    Article  Google Scholar 

  • Roth P H. 1978. Cretaceous nannoplankton biostratigraphy and oceanography of the northwestern Atlantic Ocean. Init Rep Deep Sea Drilling Project, 44: 731–759

    Google Scholar 

  • Rubin K. 1997. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: Observations and predictions. Geochim Cosmochim Acta, 61: 3525–3542

    Article  Google Scholar 

  • Sanchez-Hernandez Y, Maurrasse F J M R. 2016. The influence of regional factors in the expression of oceanic anoxic event 1a (OAE1a) in the semirestricted Organyà Basin, south-central Pyrenees, Spain. Palaeogeogr Palaeoclimatol Palaeoecol, 441: 582–598

    Article  Google Scholar 

  • Sanchez-Hernandez Y, Maurrasse F J M R. 2014. Geochemical characterization and redox signals from the latest Barremian to the earliest Aptian in a restricted marine basin: El Pui section, Organyà Basin, south-central Pyrenees. Chem Geol, 372: 12–31

    Article  Google Scholar 

  • Sanchez-Hernandez Y, Maurrasse F J M R, Melinte-Dobrinescu M C, He D, Butler S K. 2014. Assessing the factors controlling high sedimentation rates from the latest Barremian-earliest Aptian in the hemipelagic setting of the restricted Organyà Basin, NE Spain. Cretac Res, 51: 1–21

    Article  Google Scholar 

  • Seguret M. 1972. Étude tectonique des nappes et séries décollées de la partie centrale du versant sud des Pyrénées. Publ Ustela Ser Geol Struct, 2. 155

    Google Scholar 

  • Stein M, Föllmi K B, Westermann S, Godet A, Adatte T, Matera V, Fleitmann D, Berner Z. 2011. Progressive palaeoenvironmental change during the Late Barremian-Early Aptian as prelude to Oceanic Anoxic Event 1a: Evidence from the Gorgo a Cerbara section (Umbria-Marche basin, central Italy). Paleogeogr Paleoclimatol Paleoecol, 302: 396–406

    Article  Google Scholar 

  • Stein M, Westermann S, Adatte T, Matera V, Fleitmann D, Spangenberg J E, Föllmi K B. 2012. Late Barremian-Early Aptian palaeoenvironmental change: The Cassis-La Bédoule section, southeast France. Cretac Res, 37: 209–222

    Article  Google Scholar 

  • Weissert H, Erba E. 2004. Volcanism, CO2 and palaeoclimate: A Late Jurassic-Early Cretaceous carbon and oxygen isotope record. J Geol Soc, 161: 695–702

    Article  Google Scholar 

  • Williams P M, Druffel E R M. 1987. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature, 330: 246–248

    Article  Google Scholar 

  • Wang P, Ren Y, Shan X, Sun S, Wan C, Bian W. 2002. The Cretaceous volcanic succession around the Songliao Basin, NE China: Relationship between volcanism and sedimentation. Geol J, 37: 97–115

    Article  Google Scholar 

  • Wang P, Chen C, Liu H. 2016. Aptian giant explosive volcanic eruptions in the Songliao Basin and northeast Asia: A possible cause for global climate change and OAE-1a. Cretac Res, 62: 98–108

    Article  Google Scholar 

  • Zhang X, Zhang G, Sha J. 2016. Lacustrine sedimentary record of early Aptian carbon cycle perturbation in western Liaoning, China. Cretac Res, 62: 122–129

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Glenn A. Goodfriend Memorial funds for fieldwork and laboratory analyses. Many thanks are due to Diane Pirie for her unwavering help with our carbon analyzer and gracious help at all steps of this research. We thank Bill Anderson for the carbon isotope analyses, and Cesar Ramirez at FIU’s Advanced Mass Spectrometry Facility for the biomarker analyses. Special thanks to Xiumian Hu and his collaborators for graciously hosting the IGCP 609 Workshop in China (September 2015) where we had the opportunity to discuss the ideas presented in this paper. We are most grateful to our colleague Josep Moreno-Bedmar for logistic support during part of the fieldwork, and discussions about ammonites. Mr. Ferran is gratefully acknowledged for his amiable authorization to carry out sampling of the El Pui section on his private hunting property. We also thank two anonymous reviewers for providing detailed comments that helped refine the manuscript. The Earth and Environment Department at FIU generously provided supplies and other laboratory materials. This paper is a contribution of IGCP Project 609 “Climate-environmental deteriorations during greenhouse phases: Causes and consequences of short-term Cretaceous sea-level changes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jander Socorro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Socorro, J., Maurrasse, F.JM.R. & Sanchez-Hernandez, Y. Characterization of the negative carbon isotope shift in segment C2, its global implications as a harbinger of OAE1a. Sci. China Earth Sci. 60, 30–43 (2017). https://doi.org/10.1007/s11430-016-0092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-0092-5

Keywords

Navigation