Skip to main content
Log in

Microbial D-amino acids and marine carbon storage

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In nature, there are two conformational types of amino acids: L- and D-isomers. The L-amino acids are the predominant form and are used mainly for protein synthesis, while the D-amino acids are few in quantity but more diverse in terms of their biological functions. D-amino acids are produced by many marine microbes, which are important players in carbon and energy cycles in the ocean. As the major constituent of the marine organic carbon pool, D-amino acids can persist in the water column for a long time before being further transformed by chemical or biological processes or transported through physical processes (such as absorption and aggregation). This article reviews the microbial synthesis of D-amino acids, their physiological function and metabolism in microbes, and the contribution of D-amino acids as a carbon source to the oceanic carbon reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe H, Okuma E, Amano H, Noda H, Watanabe K. 1999. Role of free d- and l-alanine in the Japanese mitten crab Eriocheir japonicus to intracellular osmoregulation during downstream spawning migration. Comp Biochem Phys A, 123: 55–59

    Article  Google Scholar 

  • Auclair J, Patton R. 1950. On the occurrence of D-alanine in the haemolymph of the milkweed bug, oncopeltus fasciatus. Rev Can Biol, 9: 3

    Google Scholar 

  • Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nature Rev Microbiol, 5: 782–791

    Article  Google Scholar 

  • Barja I, Núñez L. 1999. Microcalorimetric measurements of the influence of glucose concentration on microbial activity in soils. Soil Biol Biochem, 31: 441–447

    Article  Google Scholar 

  • Brodowski S, Amelung W, Lobe I, Du Preez C C. 2005. Losses and biogeochemical cycling of soil organic nitrogen with prolonged arable cropping in the South African Highveld—Evidence from D- and L-amino acids. Biogeochemistry, 71: 17–42

    Article  Google Scholar 

  • Brown M, Lauro F, Demaere M, Muir L, Wilkins D, Thomas T, Riddle M, Fuhrman J, Andrews-Pfannkoch C, Hoffman J. 2012. Global biogeography of SAR11 marine bacteria. Mol Syst Biol, 8: 595

    Article  Google Scholar 

  • Brückner H, Westhauser T. 2003. Chromatographic determination of L-and D-amino acids in plants. Amino Acids, 24: 43–55

    Article  Google Scholar 

  • Dauwe B, Middelburg J J. 1998. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnol Oceanogr, 43: 782–798

    Article  Google Scholar 

  • Delfosse V, Girard E, Birck C, Delmarcelle M, Delarue M, Poch O, Schultz P, Mayer C. 2009. Structure of the archaeal pab87 peptidase reveals a novel self-compartmentalizing protease family. PLoS One, 4: e4712

  • DeLong E F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci USA, 89: 5685–5689

    Article  Google Scholar 

  • Eichinger M, Poggiale J C, Van Wambeke F, Lefevre D, Sempere R. 2006. Modelling DOC assimilation and bacterial growth efficiency in biodegradation experiments: A case study in the Northeast Atlantic Ocean. Aquat Microbial Ecol, 43: 139–151

    Article  Google Scholar 

  • Fernandes L, Garg A, Borole D V. 2014. Amino acid biogeochemistry and bacterial contribution to sediment organic matter along the western margin of the Bay of Bengal. Deep-Sea Res Part I: Oceanogr Res Pap, 83: 81–92

    Article  Google Scholar 

  • Flemming H C, Wingender J. 2010. The biofilm matrix. Nature Rev Microbiol, 8: 623–633

    Google Scholar 

  • Forsum O, Svennerstam H, Ganeteg U, Näsholm T. 2008. Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol, 179: 1058–1069

    Google Scholar 

  • Gehlen M. 2006. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences, 3: 521–537

    Article  Google Scholar 

  • Giovannoni S, Rappé M. 2000. Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman D, ed. Microbial Ecology of the Oceans. New York: Wiley. 47–84

    Google Scholar 

  • Gördes D, Kolukisaoglu Ü, Thurow K. 2011. Uptake and conversion of D-amino acids in Arabidopsis thaliana. Amino Acids, 40: 553–563

    Article  Google Scholar 

  • Halvorson H O, Spiegelman S. 1952. The inhibition of enzyme formation by amino acid analogues. J Bacteriol, 64: 207–221

    Google Scholar 

  • Herndl G J, Reinthaler T, Teira E, Aken H M V, Veth C, Pernthaler A, Pernthaler J. 2005. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol, 72: 2303–2309

    Article  Google Scholar 

  • Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, Kettrup A, Hedges J I. 2006. Characterization of a major refractory component of marine dissolved organic matter. Geochim Cosmochim Acta, 70: 2990–3010

    Article  Google Scholar 

  • Hill P W, Quilliam R S, DeLuca T H, Farrar J, Farrell M, Roberts P, Newsham K K, Hopkins D W, Bardgett R D, Jones D L. 2011. Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS One, 6: e19220

  • Hills G. 1949. Chemical factors in the germination of spore-bearing aerobes. The effects of amino-acids on the germination of Bacillus anthracis, with some observations on the relation of optical form to biological activity. Biochem J, 45: 363

    Article  Google Scholar 

  • Hochbaum A I, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. 2011. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol, 193: 5616–5622

    Article  Google Scholar 

  • Huang Y, Nishikawa T, Satoh K, Iwata T, Fukushima T, Homma H, Imai K. 1998. Urinary excretion of D-serine in human: Comparison of different ages and species. Biol Pharm Bull, 21: 156

    Article  Google Scholar 

  • Jensen P, Fenical W. 1995. The relative abundance and seawater requirements of Gram-positive bacteria in near-shore tropical marine samples. Microb Ecol, 29: 249–257

    Article  Google Scholar 

  • Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nature Rev Microbiol, 8: 593–599

    Article  Google Scholar 

  • Jørgensen N O G, Stepanaukas R, Pedersen A G U, Hansen M, Nybroe O. 2003. Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiol Ecol, 46: 269–280

    Article  Google Scholar 

  • Jørgensen N O G, Middelboe M. 2006. Occurrence and bacterial cycling of D-amino acid isomers in an estuarine environment. Biogeochemistry, 81: 77–94

    Article  Google Scholar 

  • Kaiser K, Benner R. 2008. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr, 53: 99–112

    Article  Google Scholar 

  • Kandler O, König H. 1978. Chemical composition of the peptidoglycanfree cell walls of methanogenic bacteria. Arch Microbiol, 118: 141–152

    Article  Google Scholar 

  • Kandler O, König H. 1998. Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci, 54: 305–308

    Article  Google Scholar 

  • Karatan E, Watnick P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev, 73: 310–347

    Article  Google Scholar 

  • Karner M B, DeLong E F, Karl D M. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409: 507–510

    Article  Google Scholar 

  • Kawai Y, Ishii Y, Arakawa K, Uemura K, Saitoh B, Nishimura J, Kitazawa H, Yamazaki Y, Tateno Y, Itoh T. 2004. Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl Environ Microbiol, 70: 2906–2911

    Article  Google Scholar 

  • Kawasaki N, Benner R. 2006. Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition. Limnol Oceanogr, 51: 2170–2180

    Article  Google Scholar 

  • Kim P M, Duan X, Huang A S, Liu C Y, Ming G L, Song H, Snyder S H. 2010. Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA, 107: 3175–3179

    Article  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. 2010. D-amino acids trigger biofilm disassembly. Science, 328: 627–629

    Article  Google Scholar 

  • Könneke M, Bernhard A E, José R, Walker C B, Waterbury J B, Stahl D A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437: 543–546

    Article  Google Scholar 

  • Lam H, Oh D C, Cava F, Takacs C N, Clardy J, de Pedro M A, Waldor M K. 2009. D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science, 325: 1552–1555

    Article  Google Scholar 

  • Lee C, Bada J L. 1977. Dissolved amino acids in the equatorial Pacific, the Sargasso Sea, and Biscayne Bay. Limnol Oceanogr, 22: 502–510

    Article  Google Scholar 

  • Li C, Yao X, Lu C D. 2009. Regulation of the dauBAR operon and characterization of D-amino acid dehydrogenase DauA in arginine and lysine catabolism of Pseudomonas aeruginosa PAO1. Microbiology, 156: 60–71

    Article  Google Scholar 

  • Lomstein B A, Jorgensen B B, Schubert C J, Niggemann J. 2006. Amino acid biogeo- and stereochemistry in coastal Chilean sediments. Geochim Cosmochim Acta, 70: 2970–2989

    Article  Google Scholar 

  • Matsumoto M, Homma H, Long Z, Imai K, Iida T, Maruyama T, Aikawa Y, Endo I, Yohda M. 1999. Occurrence of free D-amino acids and aspartate racemases in hyperthermophilic Archaea. J Bacteriol, 181: 6560–6563

    Google Scholar 

  • McCarthy M D, Hedges J I, Benner R. 1998. Major bacterial contribution to marine dissolved organic nitrogen. Science, 281: 231–234

    Article  Google Scholar 

  • Miyoshi Y, Konno R, Sasabe J, Ueno K, Tojo Y, Mita M, Aiso S, Hamase K. 2012. Alteration of intrinsic amounts of D-serine in the mice lacking serine racemase and D-amino acid oxidase. Amino acids, 43: 1919–1931

    Article  Google Scholar 

  • Moriarty D, Hayward A. 1982. Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments. Microb Ecol, 8: 1–14

    Article  Google Scholar 

  • Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T. 1993. A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol, 175: 6459–6466

    Google Scholar 

  • Nagata T, Meon B, Kirchman D. 2003. Microbial degradation of peptidoglycan in seawater. Limnol Oceanogr, 48: 745–754

    Article  Google Scholar 

  • Nagata Y, Tanaka K, Iida T, Kera Y, Yamada R H, Nakajima Y, Fujiwara T, Fukumori Y, Yamanaka T, Koga Y. 1999. Occurrence of D-amino acids in a few archaea and dehydrogenase activities in hyperthermophile Pyrobaculum islandicum. Biochim Biophys Acta, 1435: 160–166

    Article  Google Scholar 

  • Ogawa H, Tanoue E. 2003. Dissolved organic matter in oceanic waters. J Oceanogr, 59: 129–147

    Article  Google Scholar 

  • Ohnishi M, Saito M, Wakabayashi S, Ishizuka M, Nishimura K, Nagata Y, Kasai S. 2008. Purification and characterization of serine racemase from a hyperthermophilic archaeon, Pyrobaculum islandicum. J Bacteriol, 190: 1359–1365

    Article  Google Scholar 

  • Pedersen A-GU, Thomsen T R, Lomstein B A, Jørgensen N O G. 2001. Bacterial influence on amino acid enantiomerization in a coastal marine sediment. Limnol Oceanogr, 46: 1358–1369

    Article  Google Scholar 

  • Ravenschlag K, Sahm K, Amann R. 2001. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbiol, 67: 387–395

    Article  Google Scholar 

  • Reeburgh W S. 1997. Figures summarizing the global cycles of biogeochemically important elements. Bull Ecol Soc Am, 78: 260–267

    Google Scholar 

  • Rydon H. 1947. D-amino acids in microbiological chemistry. Biochem J, 41: xxxvi

    Google Scholar 

  • Schleifer K H, Kandler O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev, 36: 407

    Google Scholar 

  • Snyder S H, Kim P M. 2000. D-amino acids as putative neurotransmitters: Focus on D-serine. Neurochem Res, 25: 553–560

    Article  Google Scholar 

  • Vollmer W, Blanot D, De Pedro M A. 2008. Peptidoglycan structure and architecture. FEMS Microbiol Rev, 32: 149–167

    Article  Google Scholar 

  • Xu H J, Liu Y. 2011. Reduced microbial attachment by D-amino acid-inhibited AI-2 and EPS production. Water Res, 45: 5796–5804

    Article  Google Scholar 

  • Yokoyama T, Kan-no N, Ogata T, Kotaki Y, Sato M, Nagahisa E. 2003. Presence of free D-amino acids in microalgae. Biosci Biotechnol Biochem, 67: 388

    Article  Google Scholar 

  • Yoshimura T, Esak N. 2003. Amino acid racemases: Functions and mechanisms. J Biosci Bioeng, 96: 103–109

    Article  Google Scholar 

  • Zhang G, Sun H J. 2014. Racemization in reverse: Evidence that D-amino acid toxicity on earth is controlled by bacteria with racemases. PLoS One, 9: e92101

  • Zhang Y, Sintes E, Chen J, Dai M, Jiao N, Herndl G J. 2009. Role of mesoscale cyclonic eddies in the distribution and activity of Archaea and Bacteria in the South China Sea. Aquat Microb Ecol, 56: 65–79

    Article  Google Scholar 

  • Zhang Z, Li Z, Jiao N. 2014. Effect of D-amino acids of the EPS production and cell aggregation of Alteromonas macleodii stain JL2069. Curr Microbiol, 68: 751–755

    Article  Google Scholar 

  • Zhuang R, Chen H, Yao J, Li Z, Burnet J E, Choi M M F. 2011. Impact of beta-cypermethrin on soil microbial community associated with its bioavailability: A combined study by isothermal microcalorimetry and enzyme assay techniques. J Hazard Mater, 189: 323–328

    Article  Google Scholar 

  • Zobell C E. 1946. Marine Microbiology, A monograph on Hydrobacteriology. Waltham: Chronica Botanica Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZiLian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zheng, Q. & Jiao, N. Microbial D-amino acids and marine carbon storage. Sci. China Earth Sci. 59, 17–24 (2016). https://doi.org/10.1007/s11430-015-5155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5155-x

Keywords

Navigation