Skip to main content
Log in

Magnetic reconnection as a possible heating mechanism of the local high temperature protons within magnetic clouds

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Magnetic clouds have the outstanding observational features of low proton temperature and plasma beta value, but numerous observations show that some magnetic clouds often have local high temperature phenomena. The local high temperature protons may be heated by magnetic reconnections within magnetic clouds. Here we take the magnetic cloud on 18–20 October 1995 as an example to discuss the possible heating mechanism. There is a famous protuberance in proton temperature between the front boundary and 11: 00 UT on 19 October 1995. Eight magnetic reconnection events were identified within the magnetic cloud, whose duration was less than 31 hours, and most of these reconnection events occurred within the proton temperature enhanced part of the magnetic cloud. Hence, it is possible for the local protons in the magnetic cloud to be heated by magnetic reconnections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burlaga L F, Sittler E, Mariani F, et al. 1981. Magnetic loop behind an interplanetary shock: Voyager, helios, and IMP 8 observations. J Geophys Res, 86: 6673–6684

    Article  Google Scholar 

  • Burlaga L F. 1988. Magnetic clouds and force-free fields with constant alpha. J Geophys Res, 93: 7217–7224

    Article  Google Scholar 

  • Cane H V, Richardson I G. 2003. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J Geophys Res, 108: 1156, DOI: 10.1029/2002JA009817

    Article  Google Scholar 

  • Feng H Q, Wu D J, Chao J K. 2006. Identification of configuration and boundaries of interplanetary magnetic clouds. J Geophys Res, 111: A07S90

    Google Scholar 

  • Feng H Q, Wu D J, Chao J K. 2007. Size and energy distributions of interplanetary magnetic flux ropes. J Geophys Res, 112: A02102

    Google Scholar 

  • Feng H Q, Wu D J, Lin C C, et al. 2008. Interplanetary small- and intermediate-sized magnetic flux ropes during 1995–2005. J Geophys Res, 113: A12105

    Article  Google Scholar 

  • Feng H Q, Wang J M, Wu D J. 2012. The evidence for the evolution of interplanetary small flux ropes: Boundary layers. Chin Sci Bull, 57: 1415–1420

    Article  Google Scholar 

  • Feng X S, Hu Y Q, Wei F S. 2006. Modeling the resistive MHD by the CESE method. Sol Phys, 235: 235–257

    Article  Google Scholar 

  • Gosling J T, Eriksson S, McComas D J, et al. 2007. Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind. J Geophys Res, 112: A08106

    Google Scholar 

  • Gosling J T, Skoug R M, McComas D J, et al. 2005. Direct evidence for magnetic reconnection in the solar wind near 1 AU. J Geophys Res, 110: A01107

    Google Scholar 

  • Gosling J T, Phan T D. 2013. Magnetic reconnection in the solar wind at current sheets associated with extremely small field shear angles. Astrophys J, 763: L39

    Article  Google Scholar 

  • Hu Y Q, Feng X S. 2006. Numerical study for the bursty nature of spontaneous fast reconnection. Sol Phys, 238: 329–345

    Article  Google Scholar 

  • Lepping R P, Burlaga L F, Jones J A. 1990. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J Geophys Res, 95: 11957–11965

    Article  Google Scholar 

  • Lepping R P, Narock T W, Wu C C. 2009. A scheme for finding the front boundary of an interplanetary magnetic cloud. Ann Geophys, 27: 1295–1311

    Article  Google Scholar 

  • Li H J, Feng X S, Xiang J, et al. 2013. New approach for solving the inverse boundary value problem of Laplace’s equation on a circle: Technique renovation of the Grad-Shafranov (GS) reconstruction. J Geophys Res, 118: 2876–2881

    Article  Google Scholar 

  • Lu H Y, Cao J B. 2011. Evolution of symmetric reconnection layer in the presence of parallel shear flow. Phys Plasmas, 18: 072903

    Article  Google Scholar 

  • Lyon J G, Brecht S H, Huba J D, et al. 1981. Computer simulation of a geomagnetic substorm. Phys Rev Lett, 46: 1038–1041

    Article  Google Scholar 

  • Nakagawa T, Matsuoka A. 2010. Fitting a toroidal force-free field to multispacecraft observations of a magnetic cloud. J Geophys Res, 115: 10113

    Article  Google Scholar 

  • Owens M J. 2009. The formation of large-scale current sheets within magnetic clouds. Sol Phys, 260: 207–329

    Article  Google Scholar 

  • Paschmann G, Papamastorakis W, Baumjohann N, et al. 1986. The magnetopause for large magnetic shear: AMPTE/IRM observations. J Geophys Res, 91: 11099–11115

    Article  Google Scholar 

  • Parker E N. 1963. Kinematical hydromagnetic theory and its application to the low solar photosphere. Astrophys J, 138: 552–575

    Article  Google Scholar 

  • Petschek H E. 1964. Magnetic Field Annihilation. Washington D C: NASA Special Publication. 50: 425

    Google Scholar 

  • Ruffenach A, Lavraud B, Owens M J, et al. 2012. Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. J Geophys Res, 117: A09101

    Google Scholar 

  • Sweet P A. 1958. The production of high energy particles in solar flares. Nuovo Cimento (Suppl), 8: 188

    Article  Google Scholar 

  • Vandas M, Romashets E P. 2003. A force-free field with constant alpha in an oblate cylinder: A generalization of the Lundquist solution. Astron Astrophys, 398: 801–807

    Article  Google Scholar 

  • Wang Y, Wei F S, Feng X S, et al. 2010. Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer. Phys Rev Lett, 105: 195007

    Article  Google Scholar 

  • Wang Y, Wei F S, Feng X S, et al. 2012. Variations of solar electron and proton flux in magnetic cloud boundary layers and comparisons with those across the shocks and in the reconnection exhausts. Astrophys J, 749: 82

    Article  Google Scholar 

  • Wang Y M, Wang S, Ye P Z. 2002. Multiple magnetic clouds in interplanetary space. Sol Phys, 211: 333–344

    Article  Google Scholar 

  • Wang Y M, Ye P Z, Wang S, et al. 2003a. Multiple magnetic clouds: Several examples during March–April 2001. J Geophys Res, 108: 1370

    Article  Google Scholar 

  • Wang Y M, Ye P Z, Wang S, et al. 2003b. An interplanetary cause of large geomagnetic storms: Fast forward shock overtaking preceding magnetic cloud. Geophys Res Lett, 30: 1700

    Article  Google Scholar 

  • Wang Y M, Ye P Z, Wang S, et al. 2003c. Theoretical analysis on the geoeffectiveness of a shock overtaking a preceding magnetic cloud. Sol Phys, 216: 295–310

    Article  Google Scholar 

  • Wang Y M, Zheng H N, Wang S, et al. 2005. MHD Simulation on formation and propagation of multiple magnetic clouds in the heliosphere. Astron Astrophys, 434: 309

    Article  Google Scholar 

  • Wei F S, Feng X S, Yang F, et al. 2006. A new non-pressure-balanced structure in interplanetary space: Boundary layers of magnetic clouds. J Geophys Res, 111: A03102

    Google Scholar 

  • Wei F S, Liu R, Fan Q L, et al. 2003a. Identification of the magnetic cloud boundary layers. J Geophys Res, 108: 1263

    Article  Google Scholar 

  • Wei F S, Liu R, Feng X S, et al. 2003b. Magnetic structures inside boundary layers of magnetic clouds. Geophys Res Lett, 30: 2283

    Article  Google Scholar 

  • Wei F S, Hu Q, Feng X S, et al. 2003c. Magnetic reconnection phenomena in interplanetary space. Space Sci Rev, 107: 107–110

    Article  Google Scholar 

  • Wu D J, Chao J K, Lepping R P. 2000. Interaction between an interplanetary magnetic cloud and the Earth’s magnetosphere: Motions of the bow shock. J Geophys Res, 105: 12627–12638

    Article  Google Scholar 

  • Xiong M, Zheng H N, Wang S. 2009. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision. J Geophys Res, 114: A11101

    Article  Google Scholar 

  • Xiong M, Zheng H N, Wu S T, et al. 2007. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness. J Geophys Res, 112: A11103

    Article  Google Scholar 

  • Xu X, Wei F S, Feng X. 2011. Observations of reconnection exhausts associated with large-scale current sheets within a complex ICME at 1 AU. J Geophys Res, 116: A05105

    Google Scholar 

  • Yan T, Lee L C, Priest E R. 1992. Fast magnetic reconnection with small shock angles. J Geophys Res, 97: 8277

    Article  Google Scholar 

  • Zuo P B, Wei F S, Feng X S, et al. 2007. The Relationship between the magnetic cloud boundary layer and the substorm expansion phase. Sol Phys, 242: 167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HengQiang Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, H., Wang, J. Magnetic reconnection as a possible heating mechanism of the local high temperature protons within magnetic clouds. Sci. China Earth Sci. 57, 1979–1985 (2014). https://doi.org/10.1007/s11430-013-4816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4816-x

Keywords

Navigation