Skip to main content
Log in

Organic carbon isotope gradient and ocean stratification across the late Ediacaran-Early Cambrian Yangtze Platform

  • Research Paper
  • Special Topic: Frontiers of Geobiology
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Organic carbon isotope (δ 13Corg) data from two well-preserved sections across a shallow-to-deep water transect of the late Ediacaran-Early Cambrian Yangtze Platform in South China show significant temporal and spatial variations. In the shallow-water Jiulongwan-Jijiapo section, δ 13Corg values of the late Ediacaran Dengying Formation range from −29‰ to −24‰. In the deep-water Longbizui section, δ 13Corg values from time-equivalent strata of the Dengying Formation are mostly between −35 and −32‰. These new data, in combination with δ 13Corg data reported from other sections in South China, reveal a 6‰-8 shallow-to-deep water δ 13Corg gradient. High δ 13Corg values (>−30‰) occur mostly in shallow-water carbonate rocks, whereas low δ 13Corg values (<−32‰) dominate the deep-water black shale and chert. The large temporal and spatial δ 13Corg variations imply limited buffering effect from a large dissolved organic carbon (DOC) reservoir that was inferred to have existed in Ediacaran-Early Cambrian oceans. Instead, δ 13Corg variations between platform and basin sections are more likely caused by differential microbial biomass contribution to total organic matter. High δ 13Corg values (>−30‰) documented from shallow-water carbonates are within the range of typical Phanerozoic δ 13Corg data and may record the isotope signature of organic matter from primary (photosynthetic) production. In contrast, low δ 13Corg values (<−32‰) from deep-water sections may have resulted from higher chemoautotrophic or methanotrophic biomass contribution to bulk organic matter in anoxic environments. The δ 13Corg data provide indirect evidence for ocean stratification and episodic chemocline fluctuations in the Ediacaran-Early Cambrian Yangtze Platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ader M, Macouin M, Trindade R I F, et al. 2009. A multilayered water column in the Ediacaran Yangtze platform? Insights from carbonate and organic matter paired δ 13C. Earth Planet Sci Lett, 288: 213–227

    Article  Google Scholar 

  • Amthor J E, Grotzinger J P, Schroder S, et al. 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31: 431–434

    Article  Google Scholar 

  • Chang H J, Chu X L, Feng L J, et al. Iron speciation in cherts from the Laobao Formation, South China: Implications for anoxic and ferruginous deep-water conditions. Chin Sci Bull, 2010, 55: 3189–3196

    Article  Google Scholar 

  • Chen D, Wang J, Qing H, et al. 2009. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chem Geol, 258: 168–181

    Article  Google Scholar 

  • Chen J Y, Bottjer D J, Oliveri P, et al. 2004. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 305: 218–222

    Article  Google Scholar 

  • Chen P. 1984. Discovery of Lower Cambrian small shelly fossils from Jijiapo, Yichang, West Hubei and its significance (in Chinese). Prof Pap Stratigr Palaeontol, 13: 49–66

    Google Scholar 

  • Condon D, Zhu M Y, Bowring S, et al. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308: 95–98

    Article  Google Scholar 

  • Conway N M, Kennicutt M C, Van Dover C L. 1994. Stable isotopes in the study of marine chemosynthetic-based food webs. In: Lajtha K, Michener R, eds. Stable Isotopes in Ecology and Environmental Science. Oxford: Blackwell Scientific Publications. 158–186

    Google Scholar 

  • Derry L A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet Sci Lett, 294: 152–162

    Article  Google Scholar 

  • Des Marais D J, Strauss H, Summons R E, et al. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359: 605–609

    Article  Google Scholar 

  • Ding L, Li Y, Chen H. 1992. Discovery of Micrhystridium regulare from Sinian-Cambrian boundary strata in Yichang, Hubei, and its stratigraphic significance (in Chinese). Acta Palaeontol Sin, 9: 303–309

    Google Scholar 

  • Dong L, Xiao S H, Shen B, et al. 2009. Basal Cambrian microfossils from the Yangtze gorges area (South China) and the Aksu area (Tarim block, northwestern China). J Paleontol, 83: 30–44

    Article  Google Scholar 

  • Galimov E M. 2004. The pattern of δ 13Corg versus HI/OI relation in recent sediments as an indicator of geochemical regime in marine basins: Comparison of the Black Sea, Kara Sea, and Cariaco Trench. Chem Geol, 204: 287–301

    Article  Google Scholar 

  • Grotzinger J P, Fike D A, Fischer W W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nature Geosci, 4: 285–292

    Article  Google Scholar 

  • Guo H, Du Y, Kah L C, et al. 2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution. Precambrian Res, 224: 169–183

    Article  Google Scholar 

  • Guo Q J, Strauss H, Liu C Q, et al. 2007. Carbon isotopic evolution of the terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze platform, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 140–157

    Article  Google Scholar 

  • Harris D, Horwath W R, van Kessel C. 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or Carbon-13 isotopic analysis. Soil Sci Soc Am J, 65: 853–1856

    Article  Google Scholar 

  • Hayes J M, Strauss H, Kaufman A J. 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol, 161: 103–125

    Article  Google Scholar 

  • Hollander D J, Smith M A. 2001. Microbially mediated carbon cycling as a control on the δ 13C of sedimentary carbon in eutrophic Lake Mendota (USA): New models for interpreting isotopic excursions in the sedimentary record. Geochim Cosmochim Acta, 65: 4321–4337

    Article  Google Scholar 

  • Hua H, Chen Z, Yuan X L, et al. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33: 277–280

    Article  Google Scholar 

  • Ishikawa T, Ueno Y, Komiya T, et al. 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Res, 14: 193–208

    Article  Google Scholar 

  • Ishikawa T, Ueno Y, Shu D G, et al. 2013. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: High-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China. Precambrian Res, 225: 190–208

    Article  Google Scholar 

  • Jacobsen S B, Kaufman A J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem Geol, 161: 37–57

    Article  Google Scholar 

  • Jiang G, Shi X, Zhang S, et al. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Res, 19: 831–849

    Article  Google Scholar 

  • Jiang G, Wang X, Shi X, et al. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze Platform. Earth Planet Sci Lett, 317–318: 96–110

    Article  Google Scholar 

  • Jiang G, Kaufman A J, Christie-Blick N, et al. 2007. Carbon isotope variability across the Ediacaran Yangtze Platform in South China: Implications for a large surface-to-deep ocean δ 13C gradient. Earth Planet Sci Lett, 261: 303–320

    Article  Google Scholar 

  • Jiang G, Sohl L E, Christie-Blick N. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (South China): Paleogeographic implications. Geology, 31: 917–920

    Article  Google Scholar 

  • Jiang G, Wang X, Shi X, et al. 2010. Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian-Ediacaran transition. Earth Planet Sci Lett, 299: 159–168

    Article  Google Scholar 

  • Johnston D T, Macdonald F A, Gill B C, et al. 2012. Uncovering the Neoproterozoic carbon cycle. Nature, 483: 320–323

    Article  Google Scholar 

  • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res, 73: 27–49

    Article  Google Scholar 

  • Kimura H, Matsumoto R, Kakuwa Y, et al. 1997. The Vendian-Cambrian δ 13C record, North Iran: Evidence for overturning of the ocean before the Cambrian Explosion. Earth Planet Sci Lett, 147: E1–E7

    Article  Google Scholar 

  • Knauth L P, Kennedy M J. 2009. The late Precambrian greening of the Earth. Nature, 460: 728–732

    Google Scholar 

  • Kouchinsky A, Bengtson S, Pavlov V, et al. 2007. Carbon isotope stratigraphy of the Precambrian-Cambrian Sukharikha River section, northwestern Siberian platform. Geol Mag, 144: 609–618

    Article  Google Scholar 

  • Lehmann M F, Bernasconi S M, Barbieri A, et al. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta, 66: 3573–3584

    Article  Google Scholar 

  • Li C, Love G D, Lyons T W, et al. 2010. A stratified redox model for the Ediacaran Ocean. Science, 328: 80–83

    Article  Google Scholar 

  • Lu M, Zhu M, Zhang J M, et al. 2013. The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Res, 225: 86–109

    Article  Google Scholar 

  • Maloof A C, Ramezani J, Bowring S A, et al. 2010. Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian-Tommotian boundary δ 13C shift, Morocco. Geology, 38: 623–626

    Article  Google Scholar 

  • McFadden K A, Huang J, Chu X L, et al. 2008. Pulsed oxidation and bioloical evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197–3202

    Article  Google Scholar 

  • Qian Y. 1999. Taxonomy and Biostratigraphy of Small Shelly Fossils in China (in Chinese). Beijing: Science Press. 247

    Google Scholar 

  • Rooney M A, Claypool G E, Chung H M. 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem Geol, 126: 219–232

    Article  Google Scholar 

  • Sahoo S K, Planavsky N J, Kendall B, et al. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546–549

    Article  Google Scholar 

  • Schrag D P, Higgins J A, Macdonald F A, et al. 2013. Authigenic carbonate and the history of the global carbon cycle. Science, 339: 540–543

    Article  Google Scholar 

  • Shen Y N, Zhang T G, Hoffman P F. 2008. On the coevolution of Ediacaran oceans and animals. Proc Natl Acad Sci USA, 105: 7376–7381

    Article  Google Scholar 

  • Steiner M, Li G X, Qian Y, et al. 2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeogr Palaeoclimatol Palaeoecol, 254: 67–99

    Article  Google Scholar 

  • Summons R, Franzmann P D, Nichols P D. 1998. Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org Geochem, 28: 465–475

    Article  Google Scholar 

  • Summons R E, Jahnke L L, Roksandic Z. 1994. Carbon isotope fractionation in lipids from methanotrophic bacteria: Relevance for interpretations of the geochemical record of biomarkers. Geochim Cosmochim Acta, 58: 2853–2863

    Article  Google Scholar 

  • Swanson-Hysell N L, Rose C V, Calmet C C, et al. 2010. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science, 328: 608–611

    Article  Google Scholar 

  • Wang J G, Chen D Z, Yan D T, et al. 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chem Geol, 306-307: 129–138

    Article  Google Scholar 

  • Wang L, Shi X, Jiang G. 2012. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeogr Palaeoclimatol Palaeoecol, 333-334: 218–227

    Article  Google Scholar 

  • Wang W, Zhou C, Yuan X, et al. 2012. A pronounced negative δ 13C excursion in an Ediacaran succession of western Yangtze Platform: A possible equivalent to the Shuram event and its implication for chemostratigraphic correlation in South China. Gondwana Res, 22: 1091–1101

    Article  Google Scholar 

  • Wang X, Shi X, Jiang G, et al. 2012. New U-Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran-Cambrian transition. J Asian Earth Sci, 48: 1–8

    Article  Google Scholar 

  • Xiao S H, Shen B, Zhou C M, et al. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proc Natl Acad Sci USA, 102: 10227–10232

    Article  Google Scholar 

  • Yin L M. 1997. Precambrian-Cambrian transitional acritarch biostratigraphy of the Yangtze Platform. Bull Natl Mus Nat Sci (Taipei), 10: 217–231

    Google Scholar 

  • Yin L M, Zhu M Y, Knoll A H, et al. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446: 661–663

    Article  Google Scholar 

  • Yuan X, Chen Z, Xiao S, et al. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390–393

    Article  Google Scholar 

  • Zhou C M, Xiao S H. 2007. Ediacaran δ 13C chemostratigraphy of South China. Chem Geol, 237: 89–108

    Article  Google Scholar 

  • Zhu M, Gehling J G, Xiao S, et al. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36: 867–870

    Article  Google Scholar 

  • Zhu M, Lu M, Zhang J M, et al. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Res, 225: 7–28

    Article  Google Scholar 

  • Zhu M, Zhang J, Yang A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 7–61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinQiang Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Shi, X., Jiang, G. et al. Organic carbon isotope gradient and ocean stratification across the late Ediacaran-Early Cambrian Yangtze Platform. Sci. China Earth Sci. 57, 919–929 (2014). https://doi.org/10.1007/s11430-013-4732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4732-0

Keywords

Navigation