Skip to main content
Log in

Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Following the M w7.9 Wenchuan earthquake, the M w6.6 Lushan earthquake is another devastating earthquake that struck the Longmenshan Fault Zone (LFZ) and caused severe damages. In this study, we collected continuous broadband ambient noise seismic data and earthquake event data from Chinese provincial digital seismic network, and then utilized ambient noise tomography method and receiver function method to obtain high resolution shear wave velocity structure, crustal thickness, and Poisson ratio in the earthquake source region and its surroundings. Based on the tomography images and the receiver function results, we further analyzed the deep seismogenic environment of the LFZ and its neighborhood. We reveal three main findings: (1) There is big contrast of the shear wave velocities across the LFZ. (2) Both the Lushan earthquake and the Wenchuan earthquake occurred in the regions where crustal shear wave velocity and crustal thickness change dramatically. The rupture faults and the aftershock zones are also concentrated in the areas where the lateral gradients of crustal seismic wave speed and crustal thickness change significantly, and the focal depths of the earthquakes are concentrated in the transitional depths where shear wave velocities change dramatically from laterally uniform to laterally non-uniform. (3) The Wenchuan earthquake and its aftershocks occurred in low Poisson ratio region, while the Lushan earthquake sequences are located in high Poisson ratio zone. We proposed that the effect of the dramatic lateral variation of shear wave velocity, and the gravity potential energy differences caused by the big contrast in the topography and the crustal thickness across the LFZ may constitute the seismogenic environment for the strong earthquakes in the LFZ, and the Poisson ratio difference between the rocks in the south and north segments of the Longmenshan Fault zone may explain the 5 years delay of the occurrence of the Lushan earthquake than the Wenchuan earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Xie Z J, Jin B K, Zheng Y, et al. Source parameters inversion of the 2013 Lushan earthquake by combining teleseismic waveforms and local seismograms. Sci China Earth Sci, 2013, doi: 10.1007/s11430-013-4640-3

    Google Scholar 

  2. Liu C L, Zheng Y, Ge C, et al. Rupture Process of the M s7.0 Lushan Earthquake, 2013. Sci China Earth Sci, 2013, doi: 10.1007/s11430-013-4639-9

    Google Scholar 

  3. Zhang P Z, Xu X W, Wen X Z, et al. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China (in Chinese). Chin J Geophys, 2008, 51: 1066–1073

    Google Scholar 

  4. Yin A, Harrison T M. Geological evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 2000, 28: 211–280

    Article  Google Scholar 

  5. Yi Z, Huang B, Chen J, et al. Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: Implications to onset of the India-Asia collision and size of Greater India. Earth Planet Sci Lett, 2011, 309: 153–165

    Google Scholar 

  6. Wu Q J, Zeng R S, Zhao W J. The upper mantle structure of the Tibetan Plateau and its implication for the continent-continent collision. Sci China Ser D-Earth Sci, 2005, 48: 1158–1164

    Article  Google Scholar 

  7. Wu Q J, Zeng R S. The Crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform (in Chinese). Chin J Geophys, 1998, 41: 669–679

    Google Scholar 

  8. Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 2000, 28: 703–706

    Article  Google Scholar 

  9. Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau. Science, 2008, 321: 1054–1058

    Article  Google Scholar 

  10. Zhang Z, Yuan X, Chen Y, et al. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth Planet Sci Lett, 2010, 292: 254–264

    Article  Google Scholar 

  11. Zhang Z, Wang Y, Chen Y, et al. Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophys Res Lett, 2009, 36: L17310, doi: 10.1029/2009GL039580

    Article  Google Scholar 

  12. England P, Molnar P. Active deformation of Asia: From kinematics to dynamics. Science, 1997, 278: 647–650

    Article  Google Scholar 

  13. Rey P, Vanderhaeghe O, Teyssier C. Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics, 2001, 342: 435–449

    Article  Google Scholar 

  14. Bendick R, Flesch L. Reconciling lithospheric deformation and lower crustal flow beneath central Tibet. Geology, 2007, 35: 895–898

    Article  Google Scholar 

  15. Barmin M P, Ritzwoller M H, Levshin A L. A fast and reliable method for surface wave tomography. Pure Appl Geophy, 2001, 158: 1351–1375

    Article  Google Scholar 

  16. Ghosh A, Holt W E, Flesch L M. Contribution of gravitational potential energy differences to the global stress field. Geophys J Int, 2009, 179: 787–812

    Article  Google Scholar 

  17. Pascal C, Cloetingh S A P L. Gravitational potential stresses and stress field of passive continental margins: Insights from the south-Norway shelf. Earth Planet Sci Lett, 2009, 277: 464–473

    Article  Google Scholar 

  18. Jones C H, Unruh J R, Sonder L J. The role of gravitational potential energy in active deformation in the southwestern United States. Nature, 1996, 381: 37–41

    Article  Google Scholar 

  19. Ghosh A, Holt W E, Flesch L M, et al. Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 2006, 34: 321–324

    Article  Google Scholar 

  20. Hodges K V, Hurtado J M, Whipple K X. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics, 2001, 20: 799–809

    Article  Google Scholar 

  21. Naliboff J B, Lithgow-Bertelloni C, Ruff L J, et al. The effects of lithospheric thickness and density structure on Earth’s stress field. Geophys J Int, 2012, 188: 1–17

    Article  Google Scholar 

  22. Zheng X F, Ouyang B, Zhang D N, et al. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake (in Chinese). Chin J Geophys, 2009, 52: 1412–1217

    Google Scholar 

  23. Zheng X F, Yao Z X, Liang J H, et al. The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches. Bull Amer Meteorol Soc, 2010, 100: 2866–2872

    Google Scholar 

  24. Li Z W, Ni S D, Hao T Y, et al. Uppermost mantle structure of the eastern margin of the Tibetan plateau from interstation Pn traveltime difference tomography. Earth Planet Sci Lett, 2012, 335-336: 195–205

    Article  Google Scholar 

  25. Li Z W, Xu Y, Huang R Q, et al. Crustal P-wave velocity structure of the Longmenshan region and its tectonic implications for the 2008 Wenchuan earthquake. Sci China Earth Sci, 2011, 54: 1386–1393

    Article  Google Scholar 

  26. Xu Y, Li Z W, Huang R, et al. Seismic structure of the Longmen Shan region from S-wave tomography and its relationship with the Wenchuan M s8.0 earthquake on 12 May 2008, sourthwestern China. Geophys Res Lett, 2010, 37: L02304, doi: 10.1029/2009GL041835

    Google Scholar 

  27. Li C, van der Hilst R D, Toksöz M N. Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Physics Earth Planet Int, 2006, 154: 180–195

    Article  Google Scholar 

  28. Li C, van der Hilst R D, Engdahl E R, et al. A new global model for P wave speed variations in Earth’s mantle. Geochem Geophys Geosyst, 2008, 9: Q05018, doi: 10.1029/2007GC001806

    Google Scholar 

  29. Bai Z, Tian X, Tian Y. Upper mantle P-wave tomography across the Longmenshan fault belt from passive-source seismic observations along Aba-Longquanshan profile. J Asian Earth Sci, 2011, 40: 873–882

    Article  Google Scholar 

  30. Liang C, Song X, Huang J. Tomographic inversion of Pn travel times in China. J Geophys Res, 2004, 109: B11304

    Article  Google Scholar 

  31. Zhang P Z, Wen X, Shen Z K, et al. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annu Rev Earth Planet Sci, 2010, 38: 353–382

    Article  Google Scholar 

  32. Langston C A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res, 1979, 84: 4749–4762

    Article  Google Scholar 

  33. Zhu L, Kanamori H. Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res, 2000, 105: 2969–2980

    Article  Google Scholar 

  34. Ge C, Zheng Y, Xiong X. Study of crustal thickness and Poisson ratio of the North China Craton (in Chinese). Chin J Geophys, 2001, 54: 2538–2548

    Google Scholar 

  35. Sabra K G, Gerstoft P, Roux P, et al. Surface wave tomography from microseisms in Southern California. Geophys Res Lett, 2005, 32: L14311, doi: 10.1029/2005GL023155

    Article  Google Scholar 

  36. Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise. Science, 2005, 307: 1615–1618

    Article  Google Scholar 

  37. Yang Y, Ritzwoller M H, Zheng Y, et al. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. J Geophys Res, 2012, 117: B04303, doi: 10.1029/ 2011JB008810

    Article  Google Scholar 

  38. Yang Y, Zheng Y, Chen J, et al. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. Geochem Geophys Geosystem, 2010, 11: Q08010, doi:10.1029/2010GC003119

    Google Scholar 

  39. Zheng Y, Shen W, Zhou L, et al. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. J Geophys Res, 2011, 116,B12312, doi: 10.1029/2011JB008637

    Google Scholar 

  40. Zheng Y, Yang Y, Ritzwoller M H, et al. Crustal structure of the northeastern Tibetan plateau, the Ordos block and the Sichuan basin from ambient noise tomography. Earthquake Sci, 2010, 23: 465–476

    Article  Google Scholar 

  41. Zhou L, Xie J, Shen W, et al. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophys J Int, 2012, 189: 1565–1583

    Article  Google Scholar 

  42. Luo Y, Xu Y, Yang Y. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth Planet Sci Lett, 2012, 313: 12–22

    Article  Google Scholar 

  43. Yao H, Campman X, de Hoop M V, et al. Estimation of surface wave Green’s functions from correlation of direct waves, coda waves, and ambient noise in SE Tibet. Phys Earth Planet Int, 2009, 177: 1–11

    Article  Google Scholar 

  44. Yao H, van der Hilst R D. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys J Int, 2009, 179: 1113–1132

    Article  Google Scholar 

  45. Yao H, Beghein C, van der Hilst R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure. Geophys J Int, 2008, 173: 205–219

    Article  Google Scholar 

  46. Ligorría J P, Ammon C J. Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Amer, 1999, 89: 1395–1400

    Google Scholar 

  47. Niu F, Li J. Component azimuths of the CEArray stations estimated from P-wave particle motion. Earthquake Sci, 2011, 24: 3–13

    Article  Google Scholar 

  48. Sun Y, Toksöz M N. Crustal structure of China and surrounding regions from P wave traveltime tomography. J Geophys Res, 2006, 111: B03310, doi: 10.1029/2005JB003962

    Article  Google Scholar 

  49. Sun Y, Li X, Kuleli S, et al. Adaptive moving window method for 3D P-velocity tomography and its application in China. Bull Seismol Soc Amer, 2004, 94: 740–746

    Article  Google Scholar 

  50. Bensen G D, Ritzwoller M H, Barmin M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int, 2007, 169: 1239–1260

    Article  Google Scholar 

  51. Lin F C, Moschetti M P, Ritzwoller M H. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys J Int, 2008, 173: 281–298

    Article  Google Scholar 

  52. Zhang P Z, Deng Q D, Zhang G M, et al. Active tectonic blocks and strong earthquake in the continent of China. Sci China Ser D-Earth Sci, 2003, 46: 13–24

    Google Scholar 

  53. Shen W, Ritzwoller M H, Schulte-Pelkum V, et al. Joint inversion of surface wave dispersion and receiver functions: A Bayesian Monte-Carlo approach. Geophys J Int, 2013, 192: 807–836

    Article  Google Scholar 

  54. Shen W, Ritzwoller M H, Schulte-Pelkum V. A 3-D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. J Geophys Res, 2013, 118: 262–276

    Article  Google Scholar 

  55. Christensen N I, Mooney W D. Seismic velocity structure and composition of the continental crust: A global view. J Geophys Res, 1995, 100: 9761–9788

    Article  Google Scholar 

  56. Wang C Y, Han W B, Wu J P, et al. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. J Geophys Res, 2007, 112: B07307, doi: 10.1029/2005JB003873

    Article  Google Scholar 

  57. Wang C Y, Lou H, Lü Z Y, et al. S-wave crustal and upper mantle’s velocity structure in the eastern Tibetan Plateau—Deep environment of lower crustal flow. Sci China Ser D-Earth Sci, 2008, 51: 263–274

    Article  Google Scholar 

  58. Wang Z, Fukao Y, Pei S. Structural control of rupturing of the Mw7.9 2008 Wenchuan Earthquake, China. Earth Planet Sci Lett, 2009, 279: 131–138

    Article  Google Scholar 

  59. Lei J, Zhao D. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (M s8.0). Geochem Geophys Geosyst, 2009, 10: Q10010, doi: 10.1029/2009GC002590

    Article  Google Scholar 

  60. Shan B, Xiong X, Zheng Y, et al. Stress changes on major faults caused by M w7.9 Wenchuan earthquake, May 12, 2008. Sci China Ser D-Earth Sci, 2009, 52: 593–601

    Article  Google Scholar 

  61. Christensen N I. Poisson’s ratio and crustal seismology. J Geophys Res, 1996, 101: 3139–3156

    Article  Google Scholar 

  62. Zhou Y S, He C R. The rheological structure of crust and mechanics of high-angle reverse fault slip for Wenchuan M s8.0 earthquake (in Chinese). Chinese J Geophys, 2009, 52: 474–484

    Google Scholar 

  63. Shan B, Xiong X, Zheng Y, et al. Stress changes on major faults caused by 2013 Lushan earthquake, and its relationship with 2008 Wenchuan earthquake. Sci China Earth Sci, 2013, doi: 10.1007/s11430-013-4642-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Ge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Ge, C., Xie, Z. et al. Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake. Sci. China Earth Sci. 56, 1158–1168 (2013). https://doi.org/10.1007/s11430-013-4641-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4641-2

Keywords

Navigation