Skip to main content
Log in

Magnetic characterization and paleoclimatic significances of late Pliocene-early Pleistocene sediments at site 882A, northwestern Pacific Ocean

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Aeolian dust, a primary terrigenous component of ocean sediments, has been widely used to reconstruct the paleoclimatic evolution because its transported distance, grain size and concentration are sensitive to climate changes. To further characterize the aeolian dust, the deposits at site Ocean Drilling Program (ODP) 882A in northwestern Pacific Ocean are divided into four grain-size fractions (<8, 8–16, 16–64, >64 μm) using the gravitative differentiation method. Detailed rock magnetism results show that magnetite and hematite are dominant magnetic minerals for the dust components. In addition, the aeolian dust (<8 μm) represented by the concentration of magnetic minerals increases sharply at 2.73 Ma, which corresponds to the onset of major glaciation in the Northern Hemisphere. In contrast, the ice-rafted detritus (IRD) (>64 μm) contributes little to the magnetic enhancement of the sediments at 2.73 Ma. These new results greatly improve our understanding of paleoenvironmental evolution during late Pliocene-early Pleistocene in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyle M, Barron J, Bralower T J, et al. Pacific Ocean and Cenozoic evolution of climate. Rev Geophys, 2008, 46: RG2002

    Article  Google Scholar 

  2. Roberts A P, Verosub K L, Weeks R J, et al. Mineral magnetic properties of middle and upper Pleistocene sediments at sites 883, 884, and 887, North Pacific Ocean. In: Rea D K, Basov I A, Scholl D W, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 145. College Station, TX (Ocean Drilling Program), 1995. 483–490

    Google Scholar 

  3. Okada M. Detailed variation of geomagnetic field intensity during the late Pleistocene at site 882. In: Rea D K, Basov I A, Scholl D W, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 145. College Station, TX (Ocean Drilling Program), 1995. 469–474

    Google Scholar 

  4. Stoner J S, Channell J E T, Hillaire-Marcel C. The magnetic signature of rapidly deposited detrital layers from the deep Labrador Sea: Relationship to North Atlantic Heinrich layers. Paleoceanography, 1996, 11: 309–325

    Article  Google Scholar 

  5. Thouveny N, Moreno E, Delanghe D, et al. Rock magnetic detection of distal ice-rafted debries: Clue for the identification of Heinrich layers on the Portuguese margin. Earth Planet Sci Lett, 2000, 180: 61–75

    Article  Google Scholar 

  6. Pirrung M, Hillenbrand C D, Diekmann B, et al. Magnetic susceptibility and ice-rafted debris in surface sediments of the Atlantic sector of the Southern Ocean. Geo-Mar Lett, 2002, 22: 170–180

    Article  Google Scholar 

  7. Pirrung M, Fütterer D, Grobe H, et al. Magnetic susceptibility and ice-rafted debris in surface sediments of the Nordic Seas: Implications for isotope stage 3 oscillations. Geo-Mar Lett, 2002, 22: 1–11

    Article  Google Scholar 

  8. Watkins S J, Maher B A. Magnetic characterization of present-day deep-sea sediments and sources in the North Atlantic. Earth Planet Sci Lett, 2003, 214: 379–394

    Article  Google Scholar 

  9. Moreno E, Thouveny N, Delanghe D, et al. Climatic and oceanographic changes in the Northeast Atlantic reflected by magnetic properties of sediments deposited on the Portuguese Margin during the last 340 ka. Earth Planet Sci Lett, 2002, 202: 465–480

    Article  Google Scholar 

  10. Yokoyama Y, Yamazaki T, Oda H. Geomagnetic 100-ky variation extracted from paleointensity records. Earth Planets Space, 2007, 59: 795–805

    Google Scholar 

  11. Yamamoto Y, Yamazaki T, Kanamatsu T, et al. Relative paleointensity stack during the last 250 kyr in the northwest Pacific. J Geophys Res, 2007, 112: B01104

    Article  Google Scholar 

  12. Yamazaki T, Kanamatsu T. A relative paleointensity record from North Pacific. Earth Planets Space, 2007, 59: 785–794

    Google Scholar 

  13. Yamazaki T, Kanamatsu T, Mizuno S, et al. Geomagnetic field variations during the last 400 kyr in the western equatorial Pacific: Paleointensity-inclination correlation revisited. Geophys Res Lett, 2008, 35: L20307

    Article  Google Scholar 

  14. Suganuma Y, Yamazaki T, Kanamatsu T. South Asian monsoon variability during the past 800 kyr revealed by rock magnetic proxies. Quat Sci Rev, 2009, 28: 926–938

    Article  Google Scholar 

  15. Janecek T R, Rea D K. Eolian deposition in the northeast Pacific Ocean: Cenozoic history of atmospheric circulation. Geol Soc Am Bull, 1983, 94: 730–738

    Article  Google Scholar 

  16. Van-Kreveld S A, Knappertsbusch M, Ottens J, et al. Biogenic carbonate and ice rafted debris (Heinrich layer) accumulation in deep-sea sediments from a Northeast Atlantic piston core. Mar Geol, 1996, 131: 21–46

    Article  Google Scholar 

  17. Leinen M, Prospero J M, Arnold E, et al. Mineralogy of aeolian dust reaching the North Pacific Ocean. 1. Sampling and analysis. J Geophys Res, 1994, 99: 21017–21023

    Article  Google Scholar 

  18. Ferguson W S, Griffin J J, Goldberg E D. Atmospheric dusts from the North Pacific—A short note on a long-range eolian transport. J Geophys Res, 1970, 75: 1137–1139

    Article  Google Scholar 

  19. Zhao T L, Gong S L, Zhang X Y, et al. Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: Implications for trans-Pacific transport. J Geophys Res, 2003, 108: 86

    Google Scholar 

  20. Chuey J M, Rea D K, Pisias N G. Late Pleistocene paleoclimatology of the central equatorial pacific: A quantitative record of eolian and carbonate deposition. Quat Res, 1987, 28: 323–339

    Article  Google Scholar 

  21. Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere. Paleoceanography, 1998, 13: 215–224

    Article  Google Scholar 

  22. Rea D K. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind. Rev Geophys, 1994, 32: 159–195

    Article  Google Scholar 

  23. Wu G J, Yao T D. A comparison of the records of dust originated from central Asia since the last interglacial (in Chinese). J Glaciol Geocryol, 2005, 27: 80–87

    Google Scholar 

  24. Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys, 2002, 40: 2-1–2-32

    Article  Google Scholar 

  25. Rea D K, Janecek T R. Late Cenozoic changes in atmospheric circulation deduced from North Pacific eolian sediments. Mar Geol, 1982, 49: 149–167

    Article  Google Scholar 

  26. Pettke T, Halliday A N, Hall C M, et al. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr. Earth Planet Sci Lett, 2000, 178: 397–413

    Article  Google Scholar 

  27. Nilson E, Lehmkuhl F. Interpreting temporal patterns in the late Quaternary dust flux from Asia to the North Pacific. Quat Int, 2001, 76/77: 67–76

    Article  Google Scholar 

  28. Asahara Y, Tanaka T, Kamioka H, et al. Asian continental nature of 87Sr/86Sr ratios in north central Pacific sediments. Earth Planet Sci Lett, 1995, 133: 105–116

    Article  Google Scholar 

  29. Nakai S, Halliday A N, Rea D K. Provenance of dust in the Pacific Ocean. Earth Planet Sci Lett, 1993, 119: 143–157

    Article  Google Scholar 

  30. Shipboard Science Party. Site 882. In: ai]Rea D K, Basov I A, Scholl D W, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 145. College Station, TX (Ocean Drilling Program), 1995. 85–118

    Google Scholar 

  31. Maslin M A, Haug G H, Sarnthein M, et al. Northwest Pacific site 882: The initiation of northern Hemisphere glaciation. In: Rea D K, Basov I A, Scholl D W, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 145. College Station, TX (Ocean Drilling Program), 1995. 315–329

    Google Scholar 

  32. Haug G H, Maslin M A, Sarnthein M, et al. Evolution of northwest Pacific sedimentation patterns since 6 Ma (site 882). In: Rea D K, Basov I A, Scholl D W, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 145. College Station, TX (Ocean Drilling Program), 1995. 293–314

    Google Scholar 

  33. Maslin M A, Haug G H, Sarnthein M, et al. The progressive intensification of northern hemisphere glaciation as seen from the North Pacific. Geol Rundsch, 1996, 85: 452–465

    Article  Google Scholar 

  34. Sigman D M, Jaccard S L, Haug G H. Polar ocean stratification in a cold climate. Nature, 2004, 428: 59–63

    Article  Google Scholar 

  35. Tiedemann R, Haug G H. Astronomical calibration of cycle stratigraphy for site 882 in the northwest Pacific. In: Rea D K, Basov I A, Scholl D W, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 145. College Station, TX (Ocean Drilling Program), 1995. 283–292

    Google Scholar 

  36. Weeks R J, Roberts A P, Verosub K L, et al. Magnetostratigraphy of upper Cenozoic sediments from leg 145, North Pacific Ocean. In: Rea D K, Basov I A, Scholl D W, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 145. College Station, TX (Ocean Drilling Program), 1995. 491–520

    Google Scholar 

  37. Zheng H, Oldfield F, Yu L, et al. The magnetic properties of particle-sized samples from the Luo Chuan loess section: Evidence for pedogenesis. Phys Earth Planet Inter, 1991, 68: 250–258

    Article  Google Scholar 

  38. Han J M, Jiang W Y. Particle size contributions to bulk magnetic susceptibility in Chinese loess and paleosol. Quat Int, 1999, 62: 103–110

    Article  Google Scholar 

  39. Hao Q Z, Oldfield F, Bloemendal J, et al. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 m.y. Geology, 2008, 36: 727–730

    Article  Google Scholar 

  40. Goldstein S L, O’Nions R K, Hamilton P J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett, 1984, 70: 221–236

    Article  Google Scholar 

  41. Rao W B, Yang J D, Chen J, et al. Sr-Nd isotope geochemistry of eolian dust of the arid-semiarid areas in China: Implications for loess provenance and monsoon evolution. Chin Sci Bull, 2006, 51: 1401–1412

    Article  Google Scholar 

  42. Liu, Q S, Deng C L. Magnetic susceptibility and its environmental significances (in Chinese). Chin J Geophys, 2009, 52: 1041–1048

    Google Scholar 

  43. Day R, Fuller M, Schmidt V A. Hysteresis properties of titanomagnetites: Grain size composition dependence. Phys Earth Planet Inter, 1977, 13: 260–267

    Article  Google Scholar 

  44. Dunlop D J. Theory and application of the Day plot (M rs/M s versus H cr/H c) 1. Theoretical curves and tests using titanomagnetite data. J Geophys Res, 2002, 107, doi: 10.1029/2001JB000486

  45. Dunlop D J. Theory and application of the Day plot (M rs/M s versus H cr/H c) 2. Application to data for rocks, sediments, and soils. J Geophys Res, 2002, 107: 2057

    Article  Google Scholar 

  46. Evans M E, Heller F. Environmental Magnetism: Principles and Applications of Environmagnetics. New York: Academic Press, 2003

    Google Scholar 

  47. Liu Q S, Deng C L, Yu Y, et al. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/paleosols. Geophys J Int, 2005, 161: 102–112

    Article  Google Scholar 

  48. Deng C L, Zhu R X, Jackson M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau. Geophys Res Lett, 2001, 27: 3715–3718

    Article  Google Scholar 

  49. Florindo F, Zhu R X, Guo B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese Loess Plateau. J Geophys Res, 1999, 104: 645–659

    Article  Google Scholar 

  50. Kosterov A. Low-temperature magnetization and AC susceptibility of magnetite: Effect of thermomagnetic history. Geophys J Int, 2003, 154: 58–71

    Article  Google Scholar 

  51. Muxworthy A R, McClelland E. Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective. Geophys J Int, 2000, 140: 101–114

    Article  Google Scholar 

  52. Haug G H, Ganopolski A, Sigman D M, et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 2005, 433: 821–825

    Article  Google Scholar 

  53. Maslin M A, Li X S, Loutre M F, et al. The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation. Quat Sci Rev, 1998, 17: 411–426

    Article  Google Scholar 

  54. Deng C L, Shaw J, Liu Q S, et al. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implications for Quaternary development of Asian aridification and cooling. Earth Planet Sci Lett, 2006, 241: 248–259

    Article  Google Scholar 

  55. Sun Y B, Liu Q S. Preliminary comparison of eolian deposition in the North Pacific and the Chinese Loess Plateau during the late Pliocene-early Pleistocene (in Chinese). Quat Sci, 2007, 27: 263–269

    Google Scholar 

  56. Sun Y B, Clemens S, An Z S, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quat Sci Rev, 2006, 25: 33–48

    Article  Google Scholar 

  57. Snoeckx H, Rea D K, Jones C E, et al. Eolian and silica deposition in the central north Pacific: Results from sites 885/886. In: Rea D K, Basov I A, Scholl D W, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 145. College Station, TX (Ocean Drilling Program), 1995. 219–230

    Google Scholar 

  58. Xiong S F, Ding Z L, Jiang W Y, et al. Initial intensification of East Asian winter monsoon at about 2.75 Ma as seen in the Chinese eolian loess-red clay deposit. Geophys Res Lett, 2003, 30: 1524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingSong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Liu, Q. Magnetic characterization and paleoclimatic significances of late Pliocene-early Pleistocene sediments at site 882A, northwestern Pacific Ocean. Sci. China Earth Sci. 55, 323–331 (2012). https://doi.org/10.1007/s11430-011-4291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4291-1

Keywords

Navigation