Skip to main content
Log in

Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

This study investigates the relationship between the hotspot-ridge interaction and the formation of oceanic plateaus and seamounts in the Southwest Indian Ocean. We first calculated the relative distance between the Southwest Indian Ridge (SWIR) and relevant hotspots on the basis of models of plate reconstruction, and then calculated the corresponding excess magmatic anomalies of the hotspots on the basis of residual bathymetry and Airy isostasy. The results reveal that the activities of the Marion hotspot can be divided into three main phases: interaction with the paleo-Rodrigues triple junction (73.6-68.5 Ma), interaction with the SWIR (68.5-42.7 Ma), and intra-plate volcanism (42.7-0 Ma). These three phases correspond to the formation of the eastern, central, and western parts of the Del Cano Rise, respectively. The magnitude and apparent periodicity of the magmatic volume flux of the Marion hotspot appear to be dominated by the hotspot-ridge distance. The periodicity of the Marion hotspot is about 25 Ma, which is much longer than that of the Hawaii and Iceland hotspots (about 15 Ma).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wessel P. Sizes and ages of seamounts using remote sensing: Implications for intraplate volcanism. Science, 1997, 277: 802–805

    Article  Google Scholar 

  2. Morgan W. Rodriguez, Darwin, Amsterdam, a second type of hotspot island. J Geophys Res, 1978, 83: 5355–5360

    Article  Google Scholar 

  3. Escartín J, Cannat M, Pouliquen G, et al. Crustal thickness of V-shaped ridges south of the Azores: Interaction of the Mid-Atlantic Ridge (36°–39°N) and the Azores hot spot. J Geophys Res, 2001, 106: 21719–21735

    Article  Google Scholar 

  4. Van Ark E, Lin J. Time variation in igneous volume flux of the Ha waii-Emperor hot spot seamount chain. J Geophys Res, 2004, 109: B11401, doi: 10.1029/2003JB002949

    Article  Google Scholar 

  5. Mjelde R, Faleide J. Variation of Icelandic and Hawaiian magmatism: Evidence for co-pulsation of mantle plumes? Marine Geophys Res, 2009, 30: 61–72

    Article  Google Scholar 

  6. Ito G, Lin J. Oceanic spreading center-hotspot interactions: Constraints from along-isochron bathymetric and gravity anomalies. Geology, 1995, 23: 657–660

    Article  Google Scholar 

  7. Maia M, Goslin J, Gente P. Evolution of the accretion processes along the Mid-Atlantic Ridge north of the Azores since 5.5 Ma: An insight into the interactions between the ridge and the plume. Geochem Geophys Geosyst, 2007, 8: Q03013, doi: 10.1029/2006GC 001318

    Article  Google Scholar 

  8. Vidal V, Bonneville A. Variations of the Hawaiian hot spot activity revealed by variations in the magma production rate. J Geophys Res, 2004, 109: B03104, doi: 10.1029/2003JB002559

    Article  Google Scholar 

  9. Adam C, Vidal V, Escartín J. 80-Myr history of buoyancy and volcanic fluxes along the trails of the Walvis and St. Helena hotspots (South Atlantic). Earth Planet Sci Lett, 2007, 261: 432–442

    Article  Google Scholar 

  10. Jokat W, Ritzmann O, Schmidt-Aursch M C, et al. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature, 2003, 423: 962–965

    Article  Google Scholar 

  11. Gente P, Dyment J, Maia M, et al. Interaction between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr: Emplacement and rifting of the hot spot-derived plateaus. Geochem Geophys Geosyst, 2003, 4: 8514, doi: 10.1029/2003GC000527

    Article  Google Scholar 

  12. Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge. Nature, 2003, 426: 405–412

    Article  Google Scholar 

  13. Tao C, Lin J, Guo S, et al. First discovery and investigation of a high temperature hydrothermal vent field on the ultraslow spreading Southwest Indian Ridge. EOS Trans AGU Fall Meet Suppl Abstract, 2007. T52B-07

  14. Goslin J, Patriat P. Absolute and relative plate motions and hypotheses on the origin of five aseismic ridges in the Indian Ocean. Tectonophys, 1983, 101: 221–244

    Article  Google Scholar 

  15. Coffin M F, Eldholm O. Large Igneous Provinces: Crustal structure, dimensions, and external consequences. Rev Geophys, 1994, 32: 1–36

    Article  Google Scholar 

  16. Sinha M C, Louden K E, Parsons B. The crustal structure of the Madagascar Ridge. Geophys J Roy Astro Soc, 1981, 66: 351–377

    Google Scholar 

  17. Smith W H F, Sandwell D T. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 1997, 277: 1956–1962

    Article  Google Scholar 

  18. Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst, 2008, 9: Q04006, doi: 10.1029/2007GC001743

    Article  Google Scholar 

  19. Patriat P, Segoufin J. Reconstruction of the central Indian Ocean. Tectonophys, 1988, 155: 211–234

    Article  Google Scholar 

  20. Cannat M, Rommevaux-Jestin C, Sauter D, et al. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J Geophys Res, 1999, 104: 21825–21843

    Article  Google Scholar 

  21. Meyzen C M, Ludden J N, Humler E, et al. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochem Geophys Geosyst, 2005, 6: Q11K11, doi: 10.1029/2005GC000979

    Article  Google Scholar 

  22. Font L, Murton B J, Roberts S, et al. Variations in melt productivity and melting conditions along SWIR (70°E-49°E): Evidence from olivine-hosted and plagioclase-hosted melt inclusions. J Petrol, 2007, 48: 1471–1494

    Article  Google Scholar 

  23. Mendel V, Sauter D, Rommevaux-Jestin C, et al. Magmatic-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge: Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern. Geochem Geophys Geosyst, 2003, 4: 9102, doi:10.1029/2002GC000417

    Article  Google Scholar 

  24. Sauter D, Patriat P, Rommevaux-Jestin C, et al. The Southwest Indian Ridge between 49°15′E and 57°E: Focused accretion and magma redistribution. Earth Planet Sci Lett, 2001, 192: 303–317

    Article  Google Scholar 

  25. Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets. Earth Planet Sci Lett, 2001, 187: 283–300

    Article  Google Scholar 

  26. Muller M R, Minshull T A, White R S. Crustal structure of the Southwest Indian Ridge at the Atlantis II Fracture Zone. J Geophys Res, 2000, 105: 25809–25828

    Article  Google Scholar 

  27. Muller M R, Minshull T A, White R S. Segmentation and melt supply at the Southwest Indian Ridge. Geology, 1999, 27: 867–870

    Article  Google Scholar 

  28. Minshull T A, Muller M R, White R S. Crustal structure of the Southwest Indian Ridge at 66°E: Seismic constraints. Geophys J Int, 2006, 166: 135–147

    Article  Google Scholar 

  29. Goslin J, Segoufin J, Schlich R, et al. Submarine topography and shallow structure of the Madagascar Ridge, western Indian Ocean. Geol Soc Am Bull, 1980, 91: 741–753

    Article  Google Scholar 

  30. Duncan R A, Richards M A. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev Geophys, 1991, 29: 31–50

    Article  Google Scholar 

  31. Muller RD, Royer J Y, Lawver L A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology, 1993, 21: 275–278

    Article  Google Scholar 

  32. Storey M, Mahoney J, Saunders A D, et al. Timing of hot spot-related volcanism and the breakup of Madagascar and India. Science, 1995, 267: 852–855

    Article  Google Scholar 

  33. Goslin J, Diament M. Mechanical and thermal isostatic response of the Del Cano Rise and Crozet Bank (southern Indian Ocean) from altimetry data. Earth Planet Sci Lett, 1987, 84: 285–294

    Article  Google Scholar 

  34. Recq M, Goslin J, Charvis P, et al. Small-scale crustal variability within an intraplate structure: the Crozet Bank (southern Indian Ocean). Geophys J Int, 1998, 134: 145–156

    Article  Google Scholar 

  35. Mahoney J J, White W M, Upton B G J, et al. Beyond EM-1: Lavas from Afanasy-Nikitin Rise and the Crozet Archipelago, Indian Ocean. Geology, 1996, 24: 615–618

    Article  Google Scholar 

  36. Curray J R, Munasinghe T. Origin of the Rajmahal Traps and the 85° E Ridge: Preliminary reconstructions of the trace of the Crozet hotspot. Geology, 1991, 19: 1237–1240

    Article  Google Scholar 

  37. Divins D L. Thickness of sedimentary cover in the Eastern Pacific Ocean. In: Udintsev G B, ed, International Geological-Geophysical Atlas of the Pacific Ocean. 2003. 120, 126, 127, 130

  38. McKenzie D. Some remarks on the development of sedimentary basins. Earth Planet Sci Lett, 1978, 40: 25–32

    Article  Google Scholar 

  39. Parsons B, Sclater J. An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res, 1977, 82: 802–827

    Article  Google Scholar 

  40. Stein C A, Stein S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 1992, 359: 123–129

    Article  Google Scholar 

  41. Crough S T. The correction for sediment loading on the seafloor. J Geophys Res, 1983, 88: 6449–6454

    Article  Google Scholar 

  42. Sauter D, Cannat M, Meyzen C, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20′E: Interaction with the Crozet hotspot? Geophys J Int, 2009, 179: 687–699

    Article  Google Scholar 

  43. Tucholke B E, Lin J. A geological model for the structure of ridge segments in slow spreading ocean crust. J Geophys Res, 1994, 99: 11937–11958

    Article  Google Scholar 

  44. DeMets C, Gordon R, Argus D, et al. Current plate motions. Geophys J Int, 1990, 101: 425–478

    Article  Google Scholar 

  45. White R S. Melt production rates in mantle plumes. Phil Trans Roy Soc Lond Ser A-Phys Engineering Sci, 1993, 342: 137–153

    Article  Google Scholar 

  46. Wessel P. An empirical method for optimal robust regional-residual separation of geophysical data. Math Geol, 1998, 30: 391–408

    Article  Google Scholar 

  47. O’Neill C, Muller D, Steinberger B. Geodynamic implications of moving Indian Ocean hotspots. Earth Planet Sci Lett, 2003, 215: 151–168

    Article  Google Scholar 

  48. Douglass J, Schilling J G, Kingsley R H, et al. Influence of the discovery and Shona mantle plumes on the Southern Mid-Atlantic Ridge: Rare Earth evidence. Geophys Res Lett, 1995, 22: 2893–2896

    Article  Google Scholar 

  49. Muller R D, Roest W R, Royer J Y. Asymmetric sea-floor spreading caused by ridge-plume interactions. Nature, 1998, 396: 455–459

    Article  Google Scholar 

  50. Morgan W J. Deep mantle convection plumes and plate motions. AAPG Bull, 1972, 56: 203–213

    Google Scholar 

  51. Kent W, Saunders A D, Kempton P D, et al. Rajmahal basalts, eastern India: Mantle sources and melt distribution at a volcanic rifted margin. AGU Geophys Monogr, 1997, 100: 145–182

    Google Scholar 

  52. Courtillot V, Davaille A, Besse J, et al. Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett, 2003, 205: 295–308

    Article  Google Scholar 

  53. Wessel P, Smith W H F. New version of the Generic Mapping Tools released. EOS Trans AGU, 1995, 76: 329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Lin, J. & Gao, J. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts. Sci. China Earth Sci. 54, 1177–1188 (2011). https://doi.org/10.1007/s11430-011-4219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4219-9

Keywords

Navigation