Skip to main content
Log in

New index of ferromanganese crusts reflecting oceanic environmental oxidation

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Ferromanganese crusts (hereinafter crusts) form in aerobic environment and the environmental oxidation degree is recorded by the redox sensitive element Co in the crusts. The ages of the layers from the surface to bottom of the crusts are determined, and main element contents at high resolution along the depth sections of three crusts from the Pacific Ocean are analyzed by an electron microprobe. Thus the variations of Co/(Fe+Mn) and Co/(Ni+Cu) with age/depth of the crust layers are obtained. By comparing the ratios of Co/(Fe+Mn) and Co/(Ni+Cu) with the δ 18O curves of the Pacific benthic foraminifera, we find that these two ratios can reflect the variation of the environmental oxidation state under which the crust layers deposit. The evolution of the oxidation degree reflected by the two indexes resembles the evolution of temperature since the Oligocene reflected by the δ 18O curves of the Pacific benthic foraminifera. This suggests that the crust-forming environment after the Oligocene is controlled mainly by the oxygen-rich bottom water originated from the Antarctic bottom water (AABW). However it is not the case prior to the Oligocene. Furthermore it suggests that the environmental oxidation degree controls the formation of the crusts and the Co contents in the crusts. This explains why the Co contents in the crusts increase with time up to now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frank D. Ferromanganese deposits of the Hawaiian archipelago. Hawaii Institut Geophys, 1976, 14: 1–69

    Google Scholar 

  2. Glasby G P, Andrews J E. Manganese crusts and nodules from the Hawaiian Ridge. Pacific Science, 1977, 31(4): 363–379

    Google Scholar 

  3. Hein J R, Manheim F T, Schwab W C, et al. Ferromanganese crusts from Necker Ridge, Horizon Guyot and S.P. Lee Guyot: geological considerations. Mar Geo, 1985, 69: 25–54

    Article  Google Scholar 

  4. De Carlo E H, Pennywell P A, Fraley C M. Geochemistry of ferromanganese deposits from the Kiribati and Tuvalu Region of the west central Pacific Ocean. Marine Mining, 1987b, 6: 301–321

    Google Scholar 

  5. Wu G H, Zhou H Y, Yang S F, et al. Advance in the research of cobalt-rich crusts. Geol J Chin Univ (in Chinese with English abstract), 2001, 7(4): 379–389

    Google Scholar 

  6. Segl M, Mangini A, Beer J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events, Paleoceanography, 1989, 4(5): 511–530

    Google Scholar 

  7. De Carlo E H. Paleoceanographic implication of rare earth element variability in a marine Fe-Mn crust from the Hawaiian Archipelago. Mar Geol, 1991, 98: 449–467

    Article  Google Scholar 

  8. Neumann T, Steuben D. Detailed geochemical study and a growth history of some ferromanganese crusts from the Tuanmotu Archipelago. Mar Min, 1991, 10: 29–48

    Google Scholar 

  9. Hein J R, Bohrson W A, Schulz M S, et al. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications. Paleoceanography, 1992, 7: 63–77

    Google Scholar 

  10. McMurtry G M, VonderHaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust. Eart Planet Sci Letts, 1994, 125: 105–118

    Article  Google Scholar 

  11. Wen X, De Carlo E H. A comparative study of the geochemistry and internal structure of seamount ferromanganese crusts. EOS Trans Am Geophys Union, 1994, 74: 78

    Google Scholar 

  12. Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific ocean: their implications for crust genesis. Mar Geol, 1997, 136: 277–297

    Article  Google Scholar 

  13. Burton K W, Ling H F, O’Nions R K. Closure of the Central American Isthmas and its effect on deep-water formation in the North Atlantic. Nature, 1997, 386: 382–385

    Article  Google Scholar 

  14. Ling H F, Burton K W, O’Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromagnese crusts. Earth Planet Sci Letts, 1997, 146: 1–12

    Article  Google Scholar 

  15. Frank M, O’Nions R K, Hein J R, et al. 60Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochim Cosmochim Acta, 1999, 63(11/12): 1689–1708

    Article  Google Scholar 

  16. Banakar V K, Hein J R. Growth response of a deepwater ferromanganese crust to evolution of the Neogene Indian Ocean. Mar Geol, 2000, 162: 529–540

    Article  Google Scholar 

  17. Banakar V K, Galy A, Sukumaran N P, et al. Himalayan sedimentary pulses recorded by detritus within a ferromanganese crust from the Central Indian Ocean. Earth Planet Sci Letts, 2003, 205: 337–348

    Article  Google Scholar 

  18. Rehkamper M, Frank M, Hein J R, et al. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments. Earth Planet Sci Letts, 2004, 219: 77–91

    Article  Google Scholar 

  19. Bogdanov Y A, Bogdanova O Y, Dubinin A V, et al. Composition of ferromanganese crusts and nodules at Northwestern Pacific guyots and geologic and paleoceanographic considerations. In: Haggerty J A, Premoli Silva I Rack F, et al., eds. Proc. ODP Sci Rests, 144, Galveston: College station, TX (Ocean Drilling Program), 1995, 745–768

    Google Scholar 

  20. Moffett J W. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay. Geochim Cosmochim Acta, 1994, 58(2): 695–703

    Article  Google Scholar 

  21. Ling H F, Jiang S Y, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean. Earth Planet Sci Letts, 2005, 232: 345–361

    Article  Google Scholar 

  22. Kennett J P. Marine Geology. Prentice-Hall, Englewood Cliffs N. J., 1982

    Google Scholar 

  23. Manheim F T. Marine cobalt resources. Science, 1986, 232: 600–608

    Article  Google Scholar 

  24. Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor. Nature, 1988, 335: 59–62

    Article  Google Scholar 

  25. Puteanus D, Halbach P. Correlation of Co concentration and growth rate—A method for age determination of ferromanganese crusts. Chem Geol, 1988, 69: 73–85

    Article  Google Scholar 

  26. Pettke T, Halliday AN, Rea D K. Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 2002, 17: 10.1029/2001PA00673

  27. Zhou F, Ling H F, Lu J L, et al. Research of the lead isotopes of ferromanganese crusts in the central Pacific Ocean. Marine Geology & Quaternary Geology (in Chinese with English abstract), 2005, 25(1): 55–61

    Google Scholar 

  28. Wu G H, Zhou H Y, Zhang H S, et al. Two main formation episodes of ferromanganese crusts. Acta Geol Sini (in Chinese with English abstract), 2005(in press)

  29. Galer S J G, Abouchami W. Practical application of lead triple spiking for correction of instrumental mass discrimination. Min Mag, 1998, 62A: 491–492

    Article  Google Scholar 

  30. Shackleton N J. The deep sea sediment record of climate variability. Prog Oceanog, 1982, 11: 199–218

    Article  Google Scholar 

  31. Shackleton N J, Opdyke N D. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28–238: oxygen isotope temperature and ice volumes on a 105 year and 106 year scale. Quat Res, 1973, 3: 39–55

    Article  Google Scholar 

  32. Aplin A, Michard A, Albarede F. 143Nd/144Nd in Pacific ferromanganese encrustations and nodules. Earth Plan Sci Lett, 1986, 81: 7–14

    Article  Google Scholar 

  33. Banakar V K, Borole D V. Depth profiles of 230Th excess transition metals and mineralogy of ferromanganese crusts of the Central Indian basin and implications for paleoceanographic influence on crust genesis. Chem Geol, 1991, 94: 33–44

    Article  Google Scholar 

  34. Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromnganese deposits from Central Pacific seamount areas. Nature, 1983, 304: 716–719

    Article  Google Scholar 

  35. Gorshkov A I. Mineral components and genesis of nodules and ferromanganese crusts on oceanic seamount. translated by Wang Xundi. Geol Sci Trans J (in Chinese), 1992, 9(3): 54–59

    Google Scholar 

  36. Chukhrov F V. Autogenetic manganese mineralogy of oceanic manganese nodules. Deposit Geology of Overseas (in Chinese), 1996, 1(total 75): 64–73

    Google Scholar 

  37. Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from the Central Pacific seamount areas. Earth Planet Sci Letts, 1984, 68(1): 73–87

    Article  Google Scholar 

  38. Keller G, Barron J A. Paleoceanographic implications of Miocene deep sea hiatuses. Geol Soc Am Bull, 1983, 94: 590–613

    Article  Google Scholar 

  39. Schnitker D. North Atlantic oceanography as possible cause of Antarctic glaciation and eutrophication. Nature, 1980, 284: 615–616

    Article  Google Scholar 

  40. Donnelly T W. Worldwide continental denudation and climatic deterioration during the late Tertiary: evidence from deep-sea sediments. Geology, 1982, 10: 451–454

    Article  Google Scholar 

  41. Kennett J P. Paleo-oceanography: global ocean evolution, Rev Geophys Space Phys, 1983, 21: 1258–1274

    Google Scholar 

  42. Leinen M, Heath G R. Sedimentary indicators of atmospheric activity in the Northern Hemisphere during the Cenozoic. Paleogeogr Pleocli Palaeoeol, 1981, 36: 1–21

    Article  Google Scholar 

  43. Nilson T. The Pleistocene—Geology and Life in the Quaternary Ice Age. Dordrecht: D. Reidel Publ. Co., 1983. 1–651

    Google Scholar 

  44. Liu T S. The loses-paleosoil sequence in China and climatic history. Episodes, 1985, 8: 21–28

    Google Scholar 

  45. Brass G W, Southam J R, Peterson W H. Warm saline bottom water in the ancient ocean. Nature, 1982, 296: 620–623

    Article  Google Scholar 

  46. Hein J R, Yeh H W, Gunn S H, et al. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits. Paleoceanography, 1993, 8(2): 293–311

    Article  Google Scholar 

  47. Glenn C R, Follmi K B, Riggs S R. et al. Phosphorous and phosphorites: sedimentology and environments of formation. J Swiss Geol Soc, Ecol Geol Helvetica, 1994, 87: 747–788

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu GuangHai.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 40206010), the National Key Basic Research Program of China (Grant No. G2000078503), the Young People Marine Science Foundation of State Oceanic Administration (Grant No. 2002316) and the Open Foundation of State Key Laboratory for Mineral Deposit Research at Nanjing University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Zhou, H., Zhang, H. et al. New index of ferromanganese crusts reflecting oceanic environmental oxidation. SCI CHINA SER D 50, 371–384 (2007). https://doi.org/10.1007/s11430-007-2011-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-007-2011-7

Keywords

Navigation