Skip to main content
Log in

Spatiotemporal variations of internal P-loading and the related mechanisms in the large shallow Lake Chaohu

  • Published:
Science in China Series D Aims and scope Submit manuscript

Abstract

Spatiotemporal variations of P species and adsorption behavior in water column, interstitial water, and sediments were investigated in the large shallow eutrophic Lake Chaohu. Orthophosphate (Ortho-P) and total phosphorus (TP) concentrations were significantly higher in the western part than in the eastern part of the lake, due to different nutrient inputs from the surrounding rivers. Moreover, particulate phosphorus (PP) concentration was in a similar spatial pattern to Ortho-P and TP concentrations, and also showed significantly positive correlation with the biomass of Microcystis, indicating more uptake and store of phosphorus by Microcystis than by other algae. Increase of pH and intensive utilization of P by phytoplankton were the main factors promoting P (especially Fe-P) release from the sediment to interstitial water during the cyanobacterial blooms in Lake Chaohu. Spatial dynamics in TP concentration, P species and adsorption behavior of the sediment, coupled with the statistical analyses, suggested that the spatial heterogeneity of P contents in the sediment was influenced by various factors, e.g. human activities, soil geochemistry and mineral composition. In spite of similar TP contents in the sediments, increase in proportion of Fe-P concentration in the sediment may result in a high risk of P release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fogg, G. E., The physiology of an algal nuisance, Proc. R. Soc. London. Ser. B, 1969, 173: 175–189.

    Article  Google Scholar 

  2. Paerl, H. W., Nuisance phytoplankton blooms in coastal, estuarine, and inland waters, Limnol. Oceanogr., 1988, 33: 823–847.

    Google Scholar 

  3. Shaprio, J., Current beliefs regarding dominance of blue-greens: the case for the importance of CO2 and pH, Int. Ver. Theor. Angew. Limnol. Verh., 1990, 24: 38–54.

    Google Scholar 

  4. Osgood, R. A., A hypothesis on the role of Aphanizomenon in translocating phosphorus, Hydrobiologia, 1988, 169: 69–76.

    Article  Google Scholar 

  5. Pettersson, K., Herlitz, E., Istvánovics, V., The role of Gloeotrichia echinulata in the transfer of phosphorus from sediments to water in Lake Erken, Hydrobiologia, 1993, 253: 123–129.

    Article  Google Scholar 

  6. Jacobsen, B. A., Bloom formation of Gloeotrichia echinutata and Aphanizomenon flos-aquae in a shallow, eutrophic, Danish lake, Hydrobiologia, 1994, 289: 193–197.

    Article  Google Scholar 

  7. Song Chunlei, Cao Xiuyun, Liu Bingqin et al., A Relationship between algae blooms and benthic phosphorus status in ponds, Acta Hydrobiologica Sinica (in Chinese), 2004, 28(1): 7–12.

    Google Scholar 

  8. Wang Xiaorong, Hua Zhaozhe, Xu Ling, et al., The effects of the environmental conditions on phosphorus release in lake sediments, Environmental Chemistry (in Chinese), 1996, 15(1): 15–19.

    Google Scholar 

  9. Anderson, J. M., Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes, Arch. Hydrobiol., 1974, 74: 527–550.

    Google Scholar 

  10. Seitzinger, S. Y., The effect of pH on the release of phosphorus from Potomac Estuary sediments: implication for blue-green algal blooms, Estua. Coast. Shelf Sci., 1991, 33: 409–418.

    Google Scholar 

  11. Xie, L., Xie, P., Tang, H., Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis bloom, an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake, Environ. Pollut., 2003, 122: 391–399.

    Article  Google Scholar 

  12. Xie, P., Biological mechanisms driving the seasonal changes in the internal loading of phosphorus in shallow lakes, Science in China, Series D, 2006, 49(Suppl. I): 14–27.

    Google Scholar 

  13. Sas, H., Lake restoration by reduction of nutrient loading, Academia Verlag Richarz, Sankt Augustin, 1989, 497.

  14. Grim, R. E., Ion exchange in relation to some properties of soil-water systems. Symposium on exchange phenomena in soils, Am. Soc. Testing Materials Spec. Publ., 1952, 142: 3–8.

    Google Scholar 

  15. Torrent, J., Schwertmnn, U., Barron, V., Fast and slow phosphorus sorption by goethite-rich natural material, Clay Clay Miner., 1992, 40(1): 14–21.

    Google Scholar 

  16. Gao Li, Zhou Jianmin, Phosphorus cycle between sediments and water in eutrophic lakes, Chinese Journal of Soil Science (in Chinese), 2004, 35(4): 512–515.

    Google Scholar 

  17. Søndergaard, M., Phosphorus release from a hypertrophic lake sediment: experiments with intact sediment cores in a continuous flow systems, Arch. Hydrobiol., 1989, 116: 45–59.

    Google Scholar 

  18. Søndergaard, M., Kristensen, P., Jeppesen, E., Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake Søbygaard, Denmark, Hydrobiologia, 1993, 253: 345–356.

    Article  Google Scholar 

  19. Anderson, F. Ø., Ring, P., Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake, Hydrobiolgia, 1999, 408/409: 175–183.

    Article  Google Scholar 

  20. Rydin, E., Potentially mobile phosphorus in Lake Erken sediment, Water Res., 2000, 34: 2037–2042.

    Article  Google Scholar 

  21. Perkins, R. G., Underwood, G. J. C., The potential for phosphorus release across the sediment-water interface in a eutrophic reservoir dosed with ferric sulphate, Water Res., 2001, 35: 1399–1406.

    Article  Google Scholar 

  22. Zhu Guangwei, Qin Boqiang, Gao Guang et al., Fractionation of phosphorus in sediments and its relation with soluble phosphorus contents in shallow lakes located in the middle and lower reaches of Changjiang River, China, Acta Scientiae Circumstantiae (in Chinese), 2004, 24(3): 381–388.

    Google Scholar 

  23. Lijklema, L., Considerations in modeling the sediment water exchange of phosphorus, Hydrobiologia, 1993, 253: 219–231.

    Article  Google Scholar 

  24. Seo, D. I., Analysis of sediment characteristics of total phosphorus models for Shagawa lake, J. Environ. Eng., 1999, 125: 346–350.

    Article  Google Scholar 

  25. Jones, R. I., Shaw, P. J., De Haan, H., Effects of dissolved humic substances on the speciation of iron and phosphate at different pH and ionic strength, Environ. Sci. Technol., 1993, 27: 1052–1059.

    Article  Google Scholar 

  26. Lopez, P., Lluch, X., Vidal, M. et al., Adsorption of phosphorus on sediments of Balearic (Spain) related to their composition, Estua. Coast. Shelf Sci., 1996, 42: 185–195.

    Article  Google Scholar 

  27. Liu Min, Hou Lijun, Xu Shiyuan et al., Phosphate adsorption characteristics of tidal flat surface sediments and its environmental effect from the Yangtze Estuary, Acta Geographica Sinica (in Chinese), 2002, 57(4): 397–406.

    Google Scholar 

  28. Zhang Binliang, Zhang Yu, Yang Min et al., Characteristics of phosphorus sorption on surface sediments in three shallow lakes in the Yangtze River Basin, Acta Scientiae Circumstantiae (in Chinese), 2004, 24(4): 595–600.

    Google Scholar 

  29. Xie, L., Xie, P., Tangm, H., Long-term (1956–1999) changes of phosphorus in a shallow, subtropical Chinese lake with emphasis on the role of inner ecological process, Water Res., 2002, 36: 343–349.

    Article  Google Scholar 

  30. Wang Sumin, Dou Hongshen, Lakes in China (in Chinese), Beijing: Science Press, 1998, 230.

    Google Scholar 

  31. Degobbis, D., Homme-Maslaowska, E., Orio, A. A. et al., The role of alkaline phosphatase in the sediment of lagoon nutrient regeneration, Estua. Coast. Shelf Sci., 1986, 22: 425–437.

    Article  Google Scholar 

  32. Murphy, J. R., Riley, J. P., A modified single solution method for the determination of phosphorus in natural waters, Analyt. Chem. Acta, 1962, 27: 31–36.

    Article  Google Scholar 

  33. Lu Rukun, Analytical Method of Soil Agricultural Chemistry (in Chinese), Beijing: Chinese Agricultural Press, 2000.

    Google Scholar 

  34. Sallade, Y. E., Sims, J. T., Phosphorus transformations in the sediment of Delaware’s agricultural drainage ways: I. phosphorus forms and sorption, J. Environ. Qual., 1997, 26(6): 1571–1579.

    Google Scholar 

  35. Hua Meng, Wang Jian, Soil Physics (in Chinese), Beijing: Beijing Agricultural University Press, 1992.

    Google Scholar 

  36. Tu Qingying, Gu Dingxi, Yin Chengqing et al., A series researches on Lakes of China, The Chao Lake-Study on eutrophication (in Chinese), Hefei: Publishing House of University of Science and Technology of China, 1990.

    Google Scholar 

  37. Xu Jun, Xie Ping, Zhang Min et al., Variation in stable isotope signatures of seston and a zooplanktivorous fish in a eutrophic Chinese lake, Hydrobiologia, 2005, 541: 215–220.

    Article  Google Scholar 

  38. Nalewajko, C., Lean, D. R. S., Phosphorus, In: The Physiological Ecology of Phytoplankton (ed. Morries, I.), 1980, 235–254.

  39. Sommer, U., Comparison between Steady state and nonsteady state competition: experiments with natural phytoplankton, Limnol. Oceanogr., 1985, 30: 335–346.

    Article  Google Scholar 

  40. Ganf, G. G., Oliver, R. L., Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake, J. Ecol., 1982, 70: 829–844.

    Google Scholar 

  41. Kromkamp, J., Konopka, A., Mur, L. R., Phosphorus uptake and photosynthesis by phosphate-limited cultures of Microcystis aeruginosa, J. Plankton Res. Br. Phycol. J., 1989, 24: 347–355.

    Google Scholar 

  42. Leermakers, M., Elskens, M., Panutrakul, S. et al., Geochemistry of mercury in an intertidal flat of the Scheldt Estuary, Neth. J. Aquat. Ecol., 1993, 27(2–4): 267–277.

    Article  Google Scholar 

  43. Madeyski, M., Bednarezyk, T., Physical, chemical and rheological characteristics of bottom sediments in reservoirs and fish ponds, Poland, IAHS Publ., 2000, 263: 237–241.

    Google Scholar 

  44. Richardson, C. J., Mechanisms controlling phosphorus retention capacity in freshwater wetlands, Science, 1985, 228: 1424–1427.

    Google Scholar 

  45. Jugsujinda, A., Krairapanond, A., Patrick, Jr. W. H., Influence of extractable iron, aluminum, and manganese on P-sorption in flooded acid sulfate soils, Biol. Fertil. Soils, 1995, 20: 118–124.

    Article  Google Scholar 

  46. Sundareshwar, P. V., Morris, J. T., Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient, Limnol. Oceanogr., 1999, 44(7): 1693–1701.

    Article  Google Scholar 

  47. Ingall, E., Jahnke, R., Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters, Geochim. Cosmochim. Acta, 1994, 58(11): 2571–2575.

    Article  Google Scholar 

  48. Pant, H. K., Reddy, K. R., Phosphorus sorption characteristics of estuarine sediments under different redox conditions, J. Environ. Qual., 2001, 30: 1474–1480.

    Article  Google Scholar 

  49. Andrieux-Loyer, F., Aminot, A., Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas, Estua. Coast. Shelf Sci., 2001, 52: 617–629.

    Article  Google Scholar 

  50. Salomons, W., Gerritse, R. G., Some observations on the occurrence of phosphorus in recent sediments from Western Europe, Sci. Total Environ., 1981, 17: 37–49.

    Article  Google Scholar 

  51. Williams, J. D. H., Jaquet, J. M., Thomas, R. L., Forms of phosphorus in the surficial sediments of Lake Erie, Journal of the Fisheries Research Board of Canada, 1976, 33: 413–429.

    Google Scholar 

  52. Raiswell, R., Canfield, D. E., Sources of iron for pyrite formation in marine sediments, Am. J. Sci., 1998, 298: 219–245.

    Article  Google Scholar 

  53. Golterman, H. L., Theoretical aspects of the adsorption of ortho-phosphate onto iron-hydroxide, Hydrobiologia, 1995, 315: 59–68.

    Article  Google Scholar 

  54. Lijklema, L., Interaction of orthophosphate with iron (III) and aluminium hydroxides, Environ. Sci. Technol., 1980, 14: 537–541.

    Article  Google Scholar 

  55. Gonsiorczyk, T., Casper, P., Koschel, R., Phosphorus binging forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic district (Germany), Water Sci. Technol., 1998, 37(3): 51–58.

    Article  Google Scholar 

  56. Kozerski, H. P., Kleeberg, A., The sediments and the benthic pelagic exchange in the shallow lake Muggelsee, Int. Rev. Hydrobiol., 1998, 83: 77–112.

    Google Scholar 

  57. De Groot, C., The influence of FeS on the inorganic phosphate system in sediments, Verh. Int. Ver. Limnol., 1991, 24: 3029–3035.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Ping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Xie, P., Xu, J. et al. Spatiotemporal variations of internal P-loading and the related mechanisms in the large shallow Lake Chaohu. SCI CHINA SER D 49 (Suppl 1), 72–81 (2006). https://doi.org/10.1007/s11430-006-8107-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-006-8107-7

Keywords

Navigation