Skip to main content
Log in

Neue Medikamente

New drugs

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Die Pathogenese des Typ-2-Diabetes beruht auf einem komplexen Wechselspiel verschiedenster pathophysiologischer Mechanismen einzelner Organe und Gewebe, z. B. endokrines Pankreas, Leber, Fettgewebe, Skelettmuskulatur, Nieren, autonomes Nervensystem, Gastrointestinaltrakt etc. Diese sind auf vielfältige Weise mit der Entstehung einer Insulinresistenz und/oder reduzierten Funktion der Langerhans-Inseln des Pankreas verbunden und können nicht nur den Blutzuckerspiegel, sondern auch das kardiovaskuläre Risiko erhöhen. Die verschiedenen Mechanismen weisen aber auch daraufhin, dass sich hinter dem „Syndrom eines Diabetes mellitus“ einzelne Subtypen verbergen, die möglicherweise unterschiedlicher zielgerichteter Therapiestrategien bedürfen und auch entsprechend unterschiedlich auf bestimmte therapeutische Interventionen ansprechen. Die Zukunft wird darin liegen, das Rätsel dieser Subtypen zu lösen, um nicht nur die Hyperglykämie effektiv zu reduzieren, sondern damit einhergehend die diabetisch-spezifischen mikroangiopathischen Spätkomplikationen und auch das kardiovaskuläre Risiko zu reduzieren. In diesem Beitrag werden neue Entwicklungen in der Insulintherapie und in der oralen antidiabetischen Therapie zusammengefasst.

Abstract

The pathogenesis of type 2 diabetes is a complex interplay between different pathophysiological mechanisms related to altered functions of different organs, e.g. endocrine pancreas, liver, fatty tissue, skeletal muscle, kidneys, autonomic nervous system and gastrointestinal system. These multiple mechanisms with implications for glucose and lipid metabolism are related to features of insulin resistance, impaired islet function and the development of hyperglycemia. The future will have to find solutions to this puzzle and it appears evident that type 2 diabetes covers many different subtypes which might benefit from different therapeutic strategies. The strategies have to focus not only on lowering blood glucose levels but also on reducing specific complications, such as microangiopathy and cardiovascular risks. This review focuses on developments in insulin therapy and oral anti-diabetic drugs are also summarized. Furthermore, different mechanisms and metabolic pathways are outlined which might be potential drug targets driven by the persisting hope to one day cure and prevent diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ahnfelt-Ronne J, Hecksher-Sorensen J, Scheffer L, Madsen OD (2012) A new view of the beta-cell. Diabetologia 55:2316–2318

    Article  PubMed  CAS  Google Scholar 

  2. Ahren B (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8:369–385

    Article  PubMed  CAS  Google Scholar 

  3. Bernstein G (2008) Delivery of insulin to the buccal mucosa utilizing the RapidMist System. Expert Opin Drug Deliv 5:1047–1055

    Article  PubMed  CAS  Google Scholar 

  4. Blevins T, Rosenstock J, Bergendahl RM et al (2012) Better glycemic control and weight loss with the novel long acting PEGylated basal insulin LY2605541 compared with insulin glargine in patients with type 1 diabetes. Diabetologia 55 (Suppl 1):377

    Google Scholar 

  5. Cavelti-Weder A, Babians-Brunner A, Keller C et al (2012) Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35:1654–1662

    Article  PubMed  CAS  Google Scholar 

  6. Cernea S, Kidron M, Wohlgelernter J et al (2005) Dose-response relationship of oral insulin spray in healthy subjects. Diabetes Care 28:1353–1357

    Article  PubMed  CAS  Google Scholar 

  7. Copps KD, White MF (2012) Regulation of insulin sensitivity by serine/theorine phosphorylation of insulin receptor substrate proteins IRS and IRS2. Diabetologia 55:2565–2582

    Article  PubMed  CAS  Google Scholar 

  8. DeSouza C, Fonseca V (2009) Therapeutic targets to reduce cardiovascular disease in type 2 diabetes. Nat Rev Drug Discov 8:361–367

    Article  PubMed  CAS  Google Scholar 

  9. Garber AJ, King AB, Del Prato S et al (2012) Insulin degludec, an ultra-long acting basal insulin vs. insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 2 diabetes (BEGIN Basal-Bolus Type 2): a phase 3, randomized, open-label, treat-to-target non-inferiority trial. Lancet 379:1498–1507

    Article  PubMed  CAS  Google Scholar 

  10. Goldfine AB, Fonseca V, Jablonski KA et al (2010) The effects of salasate on glycemic control in patients with type 2 diabetes mellitus: a randomized trial. Ann Intern Med 152:346–357

    Article  PubMed  Google Scholar 

  11. Guthrie RM (2012) Evolving therapeutic options for type 2 diabetes mellitus: an overview. Postgrad Med 124:82–89

    Article  PubMed  Google Scholar 

  12. Henry RR, Lincoff AM, Mudaliar S et al (2009) Effect of the dual peroxisome proliferator-activated receptor alpha/gamma agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomized, dose-ranging study. Lancet 374:126–135

    Article  PubMed  CAS  Google Scholar 

  13. Kazda CM, Garhyan P, Kelly RP et al (2012) 12-week treatment with glucagon receptor antagonist LY2409021 significantly lowers HbA1c and is well tolerated in patients with type 2 diabetes mellitus. Diabetologia 55 (Suppl 1):51–52

    Article  Google Scholar 

  14. Kelly R, Lim CN, Pratt E et al (2012) Glucagon receptor antagonist LY2409021 does not delay recovery from insulin induced hypoglycaemia in patients with type 2 diabetes mellitus. Diabetologia 55 (Suppl 1):337

    Google Scholar 

  15. Matschinsky FM (2013) GKAS for diabetes therapy: why no clinically useful drug after two decades of trying? Trends Pharmacol Sci. DOI 10.1016/j.tips.2012.11.007

  16. Michael MD, Ruan X, Chen CC (2012) Functional characterization of a mouse-selective small molecule agonist of TGR5. Diabetologia 55 (Suppl 1):338

    Google Scholar 

  17. Mueller-Wieland D, Knebel B, Haas J, Kotzka J (2012) SREBP-1 in fatty liver: clinical relevance for diabetes, obesity, dyslipidemia and atherosclerosis. Herz 37:273–278

    Article  Google Scholar 

  18. Muoio DM (2012) Revisiting the connection between intramyocellular lipids and insulin resistance: a long and winding road. Diabetologia 55:2551–2254

    Article  PubMed  CAS  Google Scholar 

  19. Rosenstock J, Lorber D, Gnudi L et al (2010) Prandial inhaled insulin plus basal insulin glargine vs. twice daily biaspart insulin for type 2 diabetes: a multicentre randomized trial. Lancet 375:2244–2253

    Article  PubMed  CAS  Google Scholar 

  20. Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250

    Article  PubMed  CAS  Google Scholar 

  21. Samuel VT, Petersen KF, Shulmann GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2272

    Article  PubMed  CAS  Google Scholar 

  22. Sun D, Wang M, Wang Z (2011) Small molecule 11β-hydroxysteroid dehydrogenase type 1 inhibitors. Curr Top Med Chem 11:1464–1475

    Article  PubMed  CAS  Google Scholar 

  23. Tahrani AA, Bailey CF, DelProato S, Barnett AH (2011) Management of type 2 diabetes: new and future developments in treatment. Lancet 378:182–197

    Article  PubMed  CAS  Google Scholar 

  24. Tang J-J, Lee J-G, Qi W et al (2011) Inhibition of SREBP by a small molecule, betulin improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab 13:44–56

    Article  PubMed  CAS  Google Scholar 

  25. Topp BG, Geiser JS, Soon DKW et al (2012) Effects of a novel PEGylated basal insulin, LY2605541, on hepatic glucose output and muscle glucose uptake: simulations based on data from euglycaemic clamp studies. Diabetologia 55 (Suppl 1):376

    Google Scholar 

  26. Tyler JR, Dietrich R, Powell JG (2013) New and emerging pharmacologic therapies for type-2-diabetes, dyslipidemia and obesity. Clin Ther 35:A3–A17

    Article  Google Scholar 

  27. Tschöp MH, DiMarchi RD (2012) Outstanding scientific achievement award lecture 2011: defeating diabesity the case for personalized combinatorial therapies Diabetes 61:1309–1314

  28. Tseng Y-H, Cypess A-M, Hahn CR (2010) Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov 9:465–482

    Article  PubMed  CAS  Google Scholar 

  29. Turer AT, Scherer PE (2012) Adiponectin: mechanistic insights and clinical implications. Diabetologia 55:2319–2326

    Article  PubMed  CAS  Google Scholar 

  30. Younk LM, Uhl L, Davis SN (2011) Pharmacokinetics, efficacy and safety of aleglitazr for the treatment of type 2 diabetes with high cardiovascular risk. Expert Opin Drug Metab Toxicol 6:753–763

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Der Autor ist als Referent und Berater in den vergangenen Jahren für die Firmen Novartis GmbH, Sankyo Daiichi, MSD, Bristol-Myers Squibb, AstraZeneca, Roche Pharma und Boehringer Ingelheim tätig gewesen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Müller-Wieland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Wieland, D. Neue Medikamente. Diabetologe 9, 296–301 (2013). https://doi.org/10.1007/s11428-012-1019-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-012-1019-6

Schlüsselwörter

Keywords

Navigation