Skip to main content
Log in

Advances in regulation and function of stearoyl-CoA desaturase 1 in cancer, from bench to bed

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Stearoyl-CoA desaturase 1 (SCD1) converts saturated fatty acids to monounsaturated fatty acids. The expression of SCD1 is increased in many cancers, and the altered expression contributes to the proliferation, invasion, sternness and chemoresistance of cancer cells. Recently, more evidence has been reported to further support the important role of SCD1 in cancer, and the regulation mechanism of SCD1 has also been focused. Multiple factors are involved in the regulation of SCD1, including metabolism, diet, tumor microenvironment, transcription factors, non-coding RNAs, and epigenetics modification. Moreover, SCD1 is found to be involved in regulating ferroptosis resistance. Based on these findings, SCD1 has been considered as a potential target for cancer treatment. However, the resistance of SCD1 inhibition may occur in certain tumors due to tumor heterogeneity and metabolic plasticity. This review summarizes recent advances in the regulation and function of SCD1 in tumors and discusses the potential clinical application of targeting SCD1 for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, D., and Simon, M.C. (2014). Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol 24, 472–478.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ackerman, D., Tumanov, S., Qiu, B., Michalopoulou, E., Spata, M., Azzam, A., Xie, H., Simon, M.C., and Kamphorst, J.J. (2018). Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation. Cell Rep 24, 2596–2605.e5.

    PubMed  PubMed Central  CAS  Google Scholar 

  • ALJohani, A.M., Syed, D.N., and Ntambi, J.M. (2017). Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism. Trends Endocrinol Metab 28, 831–842.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ascenzi, F., De Vitis, C., Maugeri-Saccà, M., Napoli, C., Ciliberto, G., and Mancini, R. (2021). SCD1, autophagy and cancer: implications for therapy. J Exp Clin Cancer Res 40, 265.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Badur, M.G., Muthusamy, T., Parker, S.J., Ma, S., McBrayer, S.K., Cordes, T., Magana, J.H., Guan, K.L., and Metallo, C.M. (2018). Oncogenic R132 IDH1 mutations limit NADPH for de novo lipogenesis through (D)2-hydroxyglutarate production in fibrosarcoma cells. Cell Rep 25, 1018–1026.e4.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bai, Y., McCoy, J.G., Levin, E.J., Sobrado, P., Rajashankar, K.R., Fox, B. G., and Zhou, M. (2015). X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 524, 252–256.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D., and Lu, Z. (2021). Lipid metabolism and cancer. J Exp Med 218.

  • Borradaile, N.M., Han, X., Harp, J.D., Gale, S.E., Ory, D.S., and Schaffer, J.E. (2006). Disruption ofendoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47, 2726–2737.

    PubMed  CAS  Google Scholar 

  • Cheng, C., Geng, F., Cheng, X., and Guo, D. (2018). Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun 38, 27.

    Google Scholar 

  • Cheng, C., Geng, F., Li, Z., Zhong, Y., Wang, H., Cheng, X., Zhao, Y., Mo, X., Horbinski, C., Duan, W., et al. (2022). Ammonia stimulates SCAP/Insig dissociation and SREBP-1 activation to promote lipogenesis and tumour growth. Nat Metab 4, 575–588.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Choi, S.G., Yoo, Y.J., Kim, H., Lee, H., Chung, H., Nam, M.H., Moon, J.Y., Lee, H.S., Yoon, S., and Kim, W.Y. (2019). Clinical and biochemical relevance of monounsaturated fatty acid metabolism targeting strategy for cancer stem cell elimination in colon cancer. Biochem Biophys Res Commun 519, 100–105.

    PubMed  CAS  Google Scholar 

  • Cruz-Gil, S., Sanchez-Martinez, R., Gomez de Cedron, M., Martin-Hernandez, R., Vargas, T., Molina, S., Herranz, J., Davalos, A., Reglero, G., and Ramirez de Molina, A. (2018). Targeting the lipid metabolic axis ACSL/SCD in colorectal cancer progression by therapeutic miRNAs: miR-19b-1 role. J Lipid Res 59, 14–24.

    PubMed  CAS  Google Scholar 

  • Dai, S., Yan, Y., Xu, Z., Zeng, S., Qian, L., Huo, L., Li, X., Sun, L., and Gong, Z. (2017). SCD1 confers temozolomide resistance to human glioma cells via the Akt/GSK3β/β-catenin signaling axis. Front Pharmacol 8, 960.

    PubMed  Google Scholar 

  • de Lima Luna, A.C., and Forti, F.L. (2021). Modulation of SCD1 activity in hepatocyte cell lines: evaluation of genomic stability and proliferation. Mol Cell Biochem 476, 3393–3405.

    PubMed  CAS  Google Scholar 

  • Ding, M., Zhang, S., Guo, Y., Yao, J., Shen, Q., Huang, M., Chen, W., Yu, S., Zheng, Y., Lin, Y., et al. (2022). Tumor microenvironment acidity triggers lipid accumulation in liver cancer via SCD1 activation. Mol Cancer Res 20, 810–822.

    PubMed  CAS  Google Scholar 

  • El Helou, R., Pinna, G., Cabaud, O., Wicinski, J., Bhajun, R., Guyon, L., Rioualen, C., Finetti, P., Gros, A., Mari, B., et al. (2017). miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling. Cell Rep 18, 2256–2268.

    PubMed  CAS  Google Scholar 

  • Fan, C., Zhang, S., Gong, Z., Li, X., Xiang, B., Deng, H., Zhou, M., Li, G., Li, Y., Xiong, W., et al. (2021). Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy. Sci China Life Sci 64, 534–547.

    PubMed  Google Scholar 

  • Fu, Y., Zou, T., Shen, X., Nelson, P.J., Li, J., Wu, C., Yang, J., Zheng, Y., Bruns, C., Zhao, Y., et al. (2021). Lipid metabolism in cancer progression and therapeutic strategies. MedComm 2, 27–59.

    PubMed  CAS  Google Scholar 

  • Gao, Y., Li, J., Xi, H., Cui, J., Zhang, K., Zhang, J., Zhang, Y., Xu, W., Liang, W., Zhuang, Z., et al. (2020). Stearoyl-CoA-desaturase-1 regulates gastric cancer stem-like properties and promotes tumour metastasis via Hippo/YAP pathway. Br J Cancer 122, 1837–1847.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guertin, D.A., and Wellen, K.E. (2023). Acetyl-CoA metabolism in cancer. Nat Rev Cancer 23, 156–172.

    PubMed  CAS  Google Scholar 

  • Hassannia, B., Vandenabeele, P., and Vanden Berghe, T. (2019). Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830–849.

    PubMed  CAS  Google Scholar 

  • Hu, X., Xiang, J., Li, Y., Xia, Y., Xu, S., Gao, X., and Qiao, S. (2022). Inhibition of stearoyl-CoA desaturase 1 potentiates anti-tumor activity of amodiaquine in non-small cell lung cancer. Biol Pharm Bull 45, 438–445.

    PubMed  CAS  Google Scholar 

  • Huang, K.C., Chuang, P.Y., Hsieh, R.Z., Chen, C.N., Chang, S.F., and Su, Y.P. (2020). Stearoyl-CoA desaturase-1 attenuates the high shear force damage effect on human MG63 osteosarcoma cells. Int J Mol Sci 21, 4720.

    PubMed  CAS  Google Scholar 

  • Huang, Q., Wang, Q., Li, D., Wei, X., Jia, Y., Zhang, Z., Ai, B., Cao, X., Guo, T., and Liao, Y. (2019). Co-administration of 20(S)-protopanaxatriol (g-PPT) and EGFR-TKI overcomes EGFR-TKI resistance by decreasing SCD1 induced lipid accumulation in non-small cell lung cancer. J Exp Clin Cancer Res 38, 129.

    PubMed  PubMed Central  Google Scholar 

  • Ikeda, J., Ichiki, T., Takahara, Y., Kojima, H., Sankoda, C., Kitamoto, S., Tokunou, T., and Sunagawa, K. (2015). PPARγ agonists attenuate palmitate-induced ER stress through up-regulation of SCD-1 in macrophages. PLoS ONE 10, e0128546.

    PubMed  PubMed Central  Google Scholar 

  • Jeffords, E., Freeman, S., Cole, B., Root, K., Chekouo, T., Melvin, R., Bemis, L., and Simmons Jr, G. (2020). Y-box binding protein 1 acts as a negative regulator of stearoyl CoA desaturase 1 in clear cell renal cell carcinoma. Oncol Lett 20, 1.

    Google Scholar 

  • Jiang, Y., Mao, C., Yang, R., Yan, B., Shi, Y., Liu, X., Lai, W., Liu, Y., Wang, X., Xiao, D., et al. (2017). EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics 7, 3293–3305.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jung, E.J., Kwon, S.W., Jung, B.H., Oh, S.H., and Lee, B.H. (2011). Role of the AMPK/SREBP-1 pathway in the development of orotic acid-induced fatty liver. J Lipid Res 52, 1617–1625.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Katoh, Y., Yaguchi, T., Kubo, A., Iwata, T., Morii, K., Kato, D., Ohta, S., Satomi, R., Yamamoto, Y., Oyamada, Y., et al. (2022). Inhibition of stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor T cell response through regulating β-catenin signaling in cancer cells and ER stress in T cells and synergizes with anti-PD-1 antibody. J Immunother Cancer 10, e004616.

    PubMed  PubMed Central  Google Scholar 

  • Kikuchi, K., and Tsukamoto, H. (2020). Stearoyl-CoA desaturase and tumorigenesis. Chem Biol Interact 316, 108917.

    PubMed  CAS  Google Scholar 

  • Koundouros, N., and Poulogiannis, G. (2020). Reprogramming offatty acid metabolism in cancer. Br J Cancer 122, 4–22.

    PubMed  CAS  Google Scholar 

  • Kumar, M., Leon Coria, A., Cornick, S., Petri, B., Mayengbam, S., Jijon, H. B., Moreau, F., Shearer, J., and Chadee, K. (2020). Increased intestinal permeability exacerbates sepsis through reduced hepatic SCD-1 activity and dysregulated iron recycling. Nat Commun 11, 483.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lai, K.K.Y., Kweon, S.M., Chi, F., Hwang, E., Kabe, Y., Higashiyama, R., Qin, L., Yan, R., Wu, R.P., Lai, K., et al. (2017). Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a Wnt positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6. Gastroenterology 152, 1477–1491.

    PubMed  CAS  Google Scholar 

  • Lai, Y., Dong, L., Jin, H., Li, H., Sun, M., and Li, J. (2021). Exosome long non-coding RNA SOX2-OT contributes to ovarian cancer malignant progression by miR-181b-5p/SCD1 signaling. Aging 13, 23726–23738.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lei, G., Zhang, Y., Koppula, P., Liu, X., Zhang, J., Lin, S.H., Ajani, J.A., Xiao, Q., Liao, Z., Wang, H., et al. (2020). The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 30, 146–162.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leonardi, R., Subramanian, C., Jackowski, S., and Rock, C.O. (2012). Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem 287, 14615–14620.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li, J., Condello, S., Thomes-Pepin, J., Ma, X., Xia, Y., Hurley, T.D., Matei, D., and Cheng, J.X. (2017). Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20, 303–314.e5.

    PubMed  CAS  Google Scholar 

  • Lien, E.C., Westermark, A.M., Zhang, Y., Yuan, C., Li, Z., Lau, A.N., Sapp, K.M., Wolpin, B.M., and Vander Heiden, M.G. (2021). Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature 599, 302–307.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lita, A., Pliss, A., Kuzmin, A., Yamasaki, T., Zhang, L., Dowdy, T., Burks, C., de Val, N., Celiku, O., Ruiz-Rodado, V., et al. (2021). IDH1 mutations induce organelle defects via dysregulated phospholipids. Nat Commun 12, 614.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, G., Kuang, S., Cao, R., Wang, J., Peng, Q., and Sun, C. (2019). Sorafenib kills liver cancer cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids via the ATP-AMPK-mTOR-SREBP1 signaling pathway. FASEB J 33, 10089–10103.

    PubMed  CAS  Google Scholar 

  • Liu, H.H., Xu, Y., Li, C.J., Hsu, S.J., Lin, X.H., Zhang, R., Chen, J., Chen, J., Gao, D.M., Cui, J.F., et al. (2022a). An SCD1-dependent mechanoresponsive pathway promotes HCC invasion and metastasis through lipid metabolic reprogramming. Mol Ther 30, 2554–2567.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, M.Y., Li, H.M., Wang, X.Y., Xia, R., Li, X., Ma, Y.J., Wang, M., and Zhang, H.S. (2022b). TIGAR drives colorectal cancer ferroptosis resistance through ROS/AMPK/SCD1 pathway. Free Radic Biol Med 182, 219–231.

    PubMed  CAS  Google Scholar 

  • Löffler, M., Carrey, E.A., and Zameitat, E. (2015). Orotic acid, more than just an intermediate of pyrimidine de novo synthesis. J Genet Genomics 42, 207–219.

    PubMed  Google Scholar 

  • Lounis, M.A., Péant, B., Leclerc-Desaulniers, K., Ganguli, D., Daneault, C., Ruiz, M., Zoubeidi, A., Mes-Masson, A.M., and Saad, F. (2020). Modulation of de novo lipogenesis improves response to enzalutamide treatment in prostate cancer. Cancers 12, 3339.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, Y., Li, Y., Liu, Q., Tian, N., Du, P., Zhu, F., Han, Y., Liu, X., Liu, X., Peng, X., et al. (2021). MondoA-thioredoxin-interacting protein axis maintains regulatory T-cell identity and function in colorectal cancer microenvironment. Gastroenterology 161, 575–591.e16.

    PubMed  CAS  Google Scholar 

  • Luis, G., Godfroid, A., Nishiumi, S., Cimino, J., Blacher, S., Maquoi, E., Wery, C., Collignon, A., Longuespée, R., Montero-Ruiz, L., et al. (2021). Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol 43, 102006.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Luo, H., Wang, X., Song, S., Wang, Y., Dan, Q., and Ge, H. (2022a). Targeting stearoyl-coa desaturase enhances radiation induced ferroptosis and immunogenic cell death in esophageal squamous cell carcinoma. Oncoimmunology 11, 2101769.

    PubMed  PubMed Central  Google Scholar 

  • Luo, S.D., Tsai, H.T., Chiu, T.J., Li, S.H., Hsu, Y.L., Su, L.J., Tsai, M.H., Lee, C.Y., Hsiao, C.C., and Chen, C.H. (2022b). Leptin silencing attenuates lipid accumulation through sterol regulatory element-binding protein 1 inhibition in nasopharyngeal carcinoma. Int J Mol Sci 23, 5700.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Luo, Y., Huang, S., Wei, J., Zhou, H., Wang, W., Yang, J., Deng, Q., Wang, H., and Fu, Z. (2022c). Long noncoding RNA LINC01606 protects colon cancer cells from ferroptotic cell death and promotes stemness by SCD1-Wnt/β-catenin-TFE3 feedback loop signalling. Clin Transl Med 12, e752.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Magtanong, L., Ko, P.J., To, M., Cao, J.Y., Forcina, G.C., Tarangelo, A., Ward, C.C., Cho, K., Patti, G.J., Nomura, D.K., et al. (2019). Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol 26, 420–432.e9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Matilainen, J., Mustonen, A.M., Rilla, K., Käkelä, R., Sihvo, S.P., and Nieminen, P. (2020). Orotic acid-treated hepatocellular carcinoma cells resist steatosis by modification of fatty acid metabolism. Lipids Health Dis 19, 70.

    PubMed  PubMed Central  Google Scholar 

  • Mauvoisin, D., and Mounier, C. (2011). Hormonal and nutritional regulation of SCD1 gene expression. Biochimie 93, 78–86.

    PubMed  CAS  Google Scholar 

  • Melana, J.P., Mignolli, F., Stoyanoff, T., Aguirre, M.V., Balboa, M.A., Balsinde, J., and Rodriguez, J.P. (2021). The hypoxic microenvironment induces stearoyl-CoA desaturase-1 overexpression and lipidomic profile changes in clear cell renal cell carcinoma. Cancers 13, 2962.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mir, S.A., Wong, S.B.J., Narasimhan, K., Esther, C.W.L., Ji, S., Burla, B., Wenk, M.R., Tan, D.S.P., and Bendt, A.K. (2021). Lipidomic analysis of archival pathology specimens identifies altered lipid signatures in ovarian clear cell carcinoma. Metabolites 11, 597.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nganga, R., Oleinik, N., and Ogretmen, B. (2018). Mechanisms of ceramide-dependent cancer cell death. Adv Cancer Res 140, 1–25.

    PubMed  CAS  Google Scholar 

  • Noto, A., De Vitis, C., Pisanu, M.E., Roscilli, G., Ricci, G., Catizone, A., Sorrentino, G., Chianese, G., Taglialatela-Scafati, O., Trisciuoglio, D., et al. (2017). Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ. Oncogene 36, 4573–4584.

    PubMed  CAS  Google Scholar 

  • Oatman, N., Dasgupta, N., Arora, P., Choi, K., Gawali, M.V., Gupta, N., Parameswaran, S., Salomone, J., Reisz, J.A., Lawler, S., et al. (2021). Mechanisms of stearoyl CoA desaturase inhibitor sensitivity and acquired resistance in cancer. Sci Adv 7, eabd7459.

    PubMed Central  CAS  Google Scholar 

  • Pan, G., Cavalli, M., and Wadelius, C. (2021). Polymorphisms rs55710213 and rs56334587 regulate SCD1 expression by modulating HNF4A binding. Biochim Biophys Acta 1864, 194724.

    CAS  Google Scholar 

  • Park, J.H., Pyun, W.Y., and Park, H.W. (2020). Cancer metabolism: phenotype, signaling and therapeutic targets. Cells 9, 2308.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Piao, C., Cui, X., Zhan, B., Li, J., Li, Z., Li, Z., Liu, X., Bi, J., Zhang, Z., and Kong, C. (2019). Inhibition of stearoyl CoA desaturase-1 activity suppresses tumour progression and improves prognosis in human bladder cancer. J Cell Mol Med 23, 2064–2076.

    PubMed  CAS  Google Scholar 

  • Pinkham, K., Park, D.J., Hashemiaghdam, A., Kirov, A.B., Adam, I., Rosiak, K., da Hora, C.C., Teng, J., Cheah, P.S., Carvalho, L., et al. (2019). Stearoyl CoA desaturase is essential for regulation of endoplasmic reticulum homeostasis and tumor growth in glioblastoma cancer stem cells. Stem Cell Rep 12, 712–727.

    CAS  Google Scholar 

  • Pisanu, M.E., Maugeri-Saccà, M., Fattore, L., Bruschini, S., De Vitis, C., Tabbì, E., Bellei, B., Migliano, E., Kovacs, D., Camera, E., et al. (2018). Inhibition of Stearoyl-CoA desaturase 1 reverts BRAF and MEK inhibition-induced selection of cancer stem cells in BRAF-mutated melanoma. J Exp Clin Cancer Res 37, 318.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pisanu, M.E., Noto, A., De Vitis, C., Morrone, S., Scognamiglio, G., Botti, G., Venuta, F., Diso, D., Jakopin, Z., Padula, F., et al. (2017). Blockade of stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. Cancer Lett 406, 93–104.

    PubMed  CAS  Google Scholar 

  • Preethika, A., Kumari, S.N., Shetty, J., and Shetty, V. (2020). Plasma fatty acids composition and estimated delta desaturases activity in women with breast cancer. J Can Res Ther 16, 1382–1386.

    CAS  Google Scholar 

  • Qin, X.Y., Su, T., Yu, W., and Kojima, S. (2020). Lipid desaturation-associated endoplasmic reticulum stress regulates MYCN gene expression in hepatocellular carcinoma cells. Cell Death Dis 11, 66.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ramos, A., Sadeghi, S., and Tabatabaeian, H. (2021). Battling chemoresistance in cancer: root causes and strategies to uproot them. Int J Mol Sci 22, 9451.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Royo-García, A., Courtois, S., Parejo-Alonso, B., Espiau-Romera, P., and Sancho, P. (2021). Lipid droplets as metabolic determinants for stemness and chemoresistance in cancer. World J Stem Cells 13, 1307–1317.

    PubMed  PubMed Central  Google Scholar 

  • Rudalska, R., Harbig, J., Snaebjornsson, M.T., Klotz, S., Zwirner, S., Taranets, L., Heinzmann, F., Kronenberger, T., Forster, M., Cui, W., et al. (2021). LXRa activation and Raf inhibition trigger lethal lipotoxicity in liver cancer. Nat Cancer 2, 201–217.

    PubMed  CAS  Google Scholar 

  • Savino, A.M., Fernandes, S.I., Olivares, O., Zemlyansky, A., Cousins, A., Markert, E.K., Barel, S., Geron, I., Frishman, L., Birger, Y., et al. (2020). Metabolic adaptation of acute lymphoblastic leukemia to the central nervous system microenvironment depends on stearoyl-CoA desaturase. Nat Cancer 1, 998–1009.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schminke, B., Shomroni, O., Salinas, G., Bremmer, F., Kauffmann, P., Schliephake, H., Oyelami, F., Rahat, M.A., and Brockmeyer, P. (2023). Prognostic factor identification by screening changes in differentially expressed genes in oral squamous cell carcinoma. Oral Dis 29, 116–127.

    PubMed  Google Scholar 

  • Sepich-Poore, G.D., Zitvogel, L., Straussman, R., Hasty, J., Wargo, J.A., and Knight, R. (2021). The microbiome and human cancer. Science 371.

  • She, K., Fang, S., Du, W., Fan, X., He, J., Pan, H., Huang, L., He, P., and Huang, J. (2019). SCD1 is required for EGFR-targeting cancer therapy of lung cancer via re-activation of EGFR/PI3K/AKT signals. Cancer Cell Int 19, 103.

    PubMed  PubMed Central  Google Scholar 

  • Shen, J., Wu, G., Tsai, A.L., and Zhou, M. (2020). Structure and mechanism of a unique Diiron center in mammalian stearoyl-CoA desaturase. J Mol Biol 432, 5152–5161.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, V., Chassaing, B., Zhang, L., San Yeoh, B., Xiao, X., Kumar, M., Baker, M.T., Cai, J., Walker, R., Borkowski, K., et al. (2015). Microbiota-dependent hepatic lipogenesis mediated by stearoyl CoA desaturase 1 (SCD1) promotes metabolic syndrome in TLR5-deficient mice. Cell Metab 22, 983–996.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Skrypek, K., Balog, S., Eriguchi, Y., and Asahina, K. (2021). Inhibition of stearoyl-CoA desaturase induces the unfolded protein response in pancreatic tumors and suppresses their growth. Pancreas 50, 219–226.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Son, Y.M., Cheon, I.S., Goplen, N.P., Dent, A.L., and Sun, J. (2020). Inhibition of stearoyl-CoA desaturases suppresses follicular help T- and germinal center B-cell responses. Eur J Immunol 50, 1067–1077.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Spill, F., Bakal, C., and Mak, M. (2018). Mechanical and systems biology of cancer. Comput Struct Biotechnol J 16, 237–245.

    PubMed  PubMed Central  Google Scholar 

  • Subedi, A., Liu, Q., Ayyathan, D.M., Sharon, D., Cathelin, S., Hosseini, M., Xu, C., Voisin, V., Bader, G.D., D’Alessandro, A., et al. (2021). Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell 28, 1851–1867.e8.

    PubMed  CAS  Google Scholar 

  • Sun, M., Chen, X., and Yang, Z. (2022). Single cell mass spectrometry studies reveal metabolomic features and potential mechanisms of drug-resistant cancer cell lines. Anal Chim Acta 1206, 339761.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, M., and Yang, Z. (2019). Metabolomic studies oflive single cancer stem cells using mass spectrometry. Anal Chem 91, 2384–2391.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tesfay, L., Paul, B.T., Konstorum, A., Deng, Z., Cox, A.O., Lee, J., Furdui, C.M., Hegde, P., Torti, F.M., and Torti, S.V. (2019). Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res 79, 5355–5366.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Theodoropoulos, P.C., Gonzales, S.S., Winterton, S.E., Rodriguez-Navas, C., McKnight, J.S., Morlock, L.K., Hanson, J.M., Cross, B., Owen, A. E., Duan, Y., et al. (2016). Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase. Nat Chem Biol 12, 218–225.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thürmer, M., Gollowitzer, A., Pein, H., Neukirch, K., Gelmez, E., Waltl, L., Wielsch, N., Winkler, R., Löser, K., Grander, J., et al. (2022). PI (18:1/18:1) is a SCD1-derived lipokine that limits stress signaling. Nat Commun 13, 2982.

    PubMed  PubMed Central  Google Scholar 

  • Torres, V.I., Godoy, J.A., and Inestrosa, N.C. (2019). Modulating Wnt signaling at the root: porcupine and Wnt acylation. Pharmacol Ther 198, 34–45.

    PubMed  CAS  Google Scholar 

  • Tracz-Gaszewska, Z., and Dobrzyn, P. (2019). Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers 11, 948.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Triki, M., Rinaldi, G., Planque, M., Broekaert, D., Winkelkotte, A.M., Maier, C.R., Janaki Raman, S., Vandekeere, A., Van Elsen, J., Orth, M. F., et al. (2020). mTOR signaling and SREBP activity increase FADS2 expression and can activate sapienate biosynthesis. Cell Rep 31, 107806.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vivas-García, Y., Falletta, P., Liebing, J., Louphrasitthiphol, P., Feng, Y., Chauhan, J., Scott, D.A., Glodde, N., Chocarro-Calvo, A., Bonham, S., et al. (2020). Lineage-restricted regulation of SCD and fatty acid saturation by MITF controls melanoma phenotypic plasticity. Mol Cell 77, 120–137.e9.

    PubMed  Google Scholar 

  • Volmer, R., van der Ploeg, K., and Ron, D. (2013). Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci USA 110, 4628–4633.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vriens, K., Christen, S., Parik, S., Broekaert, D., Yoshinaga, K., Talebi, A., Dehairs, J., Escalona-Noguero, C., Schmieder, R., Cornfield, T., et al. (2019). Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature 566, 403–406.

    PubMed  PubMed Central  Google Scholar 

  • Wang, C., Shi, M., Ji, J., Cai, Q., Zhao, Q., Jiang, J., Liu, J., Zhang, H., Zhu, Z., and Zhang, J. (2020a). Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer. Aging 12, 15374–15391.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, H., Chen, Y., Liu, Y., Li, Q., Luo, J., Wang, L., Chen, Y., Sang, C., Zhang, W., Ge, X., et al. (2022a). The lncRNA ZFAS1 regulates lipogenesis in colorectal cancer by binding polyadenylate-binding protein 2 to stabilize SREBP1 mRNA. Mol Ther Nucleic Acids 27, 363–374.

    PubMed  CAS  Google Scholar 

  • Wang, J., Ling, R., Zhou, Y., Gao, X., Yang, Y., Mao, C., and Chen, D. (2020b). SREBP1 silencing inhibits the proliferation and motility of human esophageal squamous carcinoma cells via the Wnt/β-catenin signaling pathway. Oncol Lett 20, 2855–2869.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, L., Ye, G., Wang, Y., and Wang, C. (2022b). Stearoyl-CoA desaturase 1 regulates malignant progression of cervical cancer cells. Bioengineered 13, 12941–12954.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, X., Liu, H., Zhang, Q., Zhang, X., Qin, Y., Zhu, G., Dang, J., Wang, F., Yang, X., and Fan, R. (2021). LINC00514 promotes lipogenesis and tumor progression in esophageal squamous cell carcinoma by sponging miR-378a-5p to enhance SPHK1 expression. Int J Oncol 59, 86.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Y., Wei, Z., Pan, K., Li, J., and Chen, Q. (2020c). The function and mechanism of ferroptosis in cancer. Apoptosis 25, 786–798.

    PubMed  CAS  Google Scholar 

  • Winterton, S.E., Capota, E., Wang, X., Chen, H., Mallipeddi, P.L., Williams, N.S., Posner, B.A., Nijhawan, D., and Ready, J.M. (2018). Discovery of cytochrome P450 4F11 activated inhibitors of stearoyl coenzyme A desaturase. J Med Chem 61, 5199–5221.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wohlhieter, C.A., Richards, A.L., Uddin, F., Hulton, C.H., Quintanal-Villalonga, À., Martin, A., de Stanchina, E., Bhanot, U., Asher, M., Shah, N.S., et al. (2020). Concurrent mutations in STK11 and KEAP1 promote ferroptosis protection and SCD1 dependence in lung cancer. Cell Rep 33, 108444.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, X., Ding, Y., Yao, J., Wei, Z., Jin, H., Chen, C., Feng, J., and Ying, R. (2020). miR-215 inhibits colorectal cancer cell migration and invasion via targeting stearoyl-CoA desaturase. Comput Math Methods Med 2020, 1–10.

    Google Scholar 

  • Xuan, Y., Wang, H., Yung, M.M., Chen, F., Chan, W.S., Chan, Y.S., Tsui, S. K., Ngan, H.Y., Chan, K.K., and Chan, D.W. (2022). SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells. Theranostics 12, 3534–3552.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ye, Z., Zhuo, Q., Hu, Q., Xu, X., Mengqi liu, X., Zhang, Z., Xu, W., Liu, W., Fan, G., Qin, Y., et al. (2021). FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol 38, 101807.

    PubMed  CAS  Google Scholar 

  • Yi, J., Zhu, J., Wu, J., Thompson, C.B., and Jiang, X. (2020). Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA 117, 31189–31197.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yin, H., Qiu, X., Shan, Y., You, B., Xie, L., Zhang, P., Zhao, J., and You, Y. (2021). HIF-1a downregulation of miR-433-3p in adipocyte-derived exosomes contributes to NPC progression via targeting SCD1. Cancer 112, 1457–1470.

    CAS  Google Scholar 

  • You, X., Tian, J., Zhang, H., Guo, Y., Yang, J., Zhu, C., Song, M., Wang, P., Liu, Z., Cancilla, J., et al. (2021). Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling. Mol Metab 48, 101203.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, S., Lu, Y., Su, A., Chen, J., Li, J., Zhou, B., Liu, X., Xia, Q., Li, Y., Li, J., et al. (2021a). A CD10-OGP membrane peptolytic signaling axis in fibroblasts regulates lipid metabolism of cancer stem cells via SCD1. Adv Sci 8, 2101848.

    CAS  Google Scholar 

  • Yu, X.Q., Cai, C., Du, X., and Shen, W. (2016). Effect of hypoxia-inducible factor-2alpha/stearoyl-CoA desaturase-1 pathway on biological behaviors of hepatoma cells induced by hypoxia (in Chinese). Chin J Hepatol 24, 506–512.

    CAS  Google Scholar 

  • Yu, Y., Kim, H., Choi, S.G., Yu, J.S., Lee, J.Y., Lee, H., Yoon, S., and Kim, W.Y. (2021b). Targeting a lipid desaturation enzyme, SCD1, selectively eliminates colon cancer stem cells through the suppression of Wnt and NOTCH signaling. Cells 10, 106.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, Y., Li, H., Pu, W., Chen, L., Guo, D., Jiang, H., He, B., Qin, S., Wang, K., Li, N., et al. (2022). Cancer metabolism and tumor microenvironment: fostering each other? Sci China Life Sci 65, 236–279.

    PubMed  CAS  Google Scholar 

  • Zhang, H., Wang, M., He, Y., Deng, T., Liu, R., Wang, W., Zhu, K., Bai, M., Ning, T., Yang, H., et al. (2021). Chemotoxicity-induced exosomal lncFERO regulates ferroptosis and stemness in gastric cancer stem cells. Cell Death Dis 12, 1116.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Q., Yu, S., Lam, M.M.T., Poon, T.C.W., Sun, L., Jiao, Y., Wong, A. S.T., and Lee, L.T.O. (2019). Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res 38, 116.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, T., Guo, Z., Huo, X., Gong, Y., Li, C., Huang, J., Wang, Y., Feng, H., Ma, X., Jiang, C., et al. (2022). Dysregulated lipid metabolism blunts the sensitivity of cancer cells to EZH2 inhibitor. Ebiomedicine 77, 103872.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Y., Wang, H., Zhang, J., Lv, J., and Huang, Y. (2013). Positive feedback loop and synergistic effects between hypoxia-inducible factor-2a and stearoyl-CoA desaturase-1 promote tumorigenesis in clear cell renal cell carcinoma. Cancer Sci 104, 416–422.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, Y., Li, M., Yao, X., Fei, Y., Lin, Z., Li, Z., Cai, K., Zhao, Y., and Luo, Z. (2020). HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep 33, 108487.

    PubMed  CAS  Google Scholar 

  • Zheng, R.H., Zhang, Y.B., Qiu, F.N., Liu, Z.H., Han, Y., Huang, R., Zhao, Y., Yao, P., Qiu, Y., and Ren, J. (2021). NF-kB pathway play a role in SCD1 deficiency-induced ceramide de novo synthesis. Cancer Biol Ther 22, 164–174.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81672091, 91749107, 81972966, 82272745, 31925021, 82203102), and the National Key Research and Development Program of China (2022YFA1104001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changtao Jiang or Lixiang Xue.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Huo, X., Li, X. et al. Advances in regulation and function of stearoyl-CoA desaturase 1 in cancer, from bench to bed. Sci. China Life Sci. 66, 2773–2785 (2023). https://doi.org/10.1007/s11427-023-2352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2352-9

Navigation