Skip to main content
Log in

Engineering osteoarthritic cartilage model through differentiating senescent human mesenchymal stem cells for testing disease-modifying drugs

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Significant cellular senescence has been observed in cartilage harvested from patients with osteoarthritis (OA). In this study, we aim to develop a senescence-relevant OA-like cartilage model for developing disease-modifying OA drugs (DMOADs). Specifically, human bone marrow-derived mesenchymal stromal cells (MSCs) were expanded in vitro up to passage 10 (P10-MSCs). Following their senescent phenotype formation, P10-MSCs were subjected to pellet culture in chondrogenic medium. Results from qRT-PCR, histology, and immunostaining indicated that cartilage generated from P10-MSCs displayed both senescent and OA-like phenotypes without using other OA-inducing agents, when compared to that from normal passage 4 (P4)-MSCs. Interestingly, the same gene expression differences observed between P4-MSCs and P10-MSC-derived cartilage tissues were also observed between the preserved and damaged OA cartilage regions taken from human samples, as demonstrated by RNA Sequencing data and other analysis methods. Lastly, the utility of this senescence-initiated OA-like cartilage model in drug development was assessed by testing several potential DMOADs and senolytics. The results suggest that pre-existing cellular senescence can induce the generation of OA-like changes in cartilage. The P4- and P10-MSCs derived cartilage models also represent a novel platform for predicting the efficacy and toxicity of potential DMOADs on both preserved and damaged cartilage in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaseem, A.M., Madiraju, P., Aldebeyan, S.A., Noorwali, H., Antoniou, J., and Mwale, F. (2015). Naproxen induces type x collagen expression in human bone-marrow-derived mesenchymal stem cells through the upregulation of 5-lipoxygenase. Tissue Eng Part A 21, 234–245.

    Article  CAS  PubMed  Google Scholar 

  • Almaawi, A., Wang, H.T., Ciobanu, O., Rowas, S.A.L., Rampersad, S., Antoniou, J., and Mwale, F. (2013). Effect of acetaminophen and nonsteroidal anti-inflammatory drugs on gene expression of mesenchymal stem cells. Tissue Eng Part A 19, 1039–1046.

    Article  CAS  PubMed  Google Scholar 

  • Bertolo, A., Mehr, M., Janner-Jametti, T., Graumann, U., Aebli, N., Baur, M., Ferguson, S.J., and Stoyanov, J.V. (2016). An in vitro expansion score for tissue-engineering applications with human bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 10, 149–161.

    Article  CAS  PubMed  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell 120, 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Caramés, B., López-Armada, M.J., Cillero-Pastor, B., Lires-Dean, M., Vaamonde, C., Galdo, F., and Blanco, F.J. (2008). Differential effects of tumor necrosis factor-α and interleukin-1β on cell death in human articular chondrocytes. Osteoarthritis Cartilage 16, 715–722.

    Article  PubMed  Google Scholar 

  • Chang, J., Wang, Y., Shao, L., Laberge, R.M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N.E., Ding, S., Feng, W., et al. (2016). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22, 78–83.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D.H., Oh, S.Y., Choi, J.K., Lee, K.E., Lee, J.Y., Park, Y.J., Jo, I., and Park, Y.S. (2020). A transcriptomic analysis of serial-cultured, tonsil-derived mesenchymal stem cells reveals decreased integrin α3 protein as a potential biomarker of senescent cells. Stem Cell Res Ther 11, 359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cope, P.J., Ourradi, K., Li, Y., and Sharif, M. (2019). Models of osteoarthritis: The good, the bad and the promising. Osteoarthritis Cartilage 27, 230–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coryell, P.R., Diekman, B.O., and Loeser, R.F. (2021). Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 17, 47–57.

    Article  PubMed  Google Scholar 

  • Dai, H., Chen, R., Gui, C., Tao, T., Ge, Y., Zhao, X., Qin, R., Yao, W., Gu, S., Jiang, Y., et al. (2020). Eliminating senescent chondrogenic progenitor cells enhances chondrogenesis under intermittent hydrostatic pressure for the treatment of OA. Stem Cell Res Ther 11, 199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Pedro, N., Díez, M., García, I., García, J., Otero, L., Fernández, L., García, B., González, R., Rincón, S., Pérez, D., et al. (2020). Analytical validation of Telomere Analysis Technology® for the high-throughput analysis of multiple telomere-associated variables. Biol Proced Online 22, 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, Y., Lei, G., Lin, Z., Yang, Y., Lin, H., and Tuan, R.S. (2019). Engineering hyaline cartilage from mesenchymal stem cells with low hypertrophy potential via modulation of culture conditions and Wnt/β-catenin pathway. Biomaterials 192, 569–578.

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh, V., Hu, H., Barroga, C., Bossard, C., Kc, S., Dellamary, L., Stewart, J., Chiu, K., Ibanez, M., Pedraza, M., et al. (2018). A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 26, 18–27.

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh, V., O’Green, A.L., Bossard, C., Seo, T., Lamangan, L., Ibanez, M., Ghias, A., Lai, C., Do, L., Cho, S., et al. (2019). Modulation of the wnt pathway through inhibition of CLK2 and DYRK1A by lorecivivint as a novel, potentially disease-modifying approach for knee osteoarthritis treatment. Osteoarthritis Cartilage 27, 1347–1360.

    Article  CAS  PubMed  Google Scholar 

  • Diekman, B.O., Sessions, G.A., Collins, J.A., Knecht, A.K., Strum, S.L., Mitin, N.K., Carlson, C.S., Loeser, R.F., and Sharpless, N.E. (2018). Expression of p16INK4a is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell 17, e12771.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dingle, J.T. (1999). The effects of NSAID on the matrix of human articular cartilages. Z Rheumatol 58, 125–129.

    Article  CAS  PubMed  Google Scholar 

  • Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). Star: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Dolgin, E. (2020). Send in the senolytics. Nat Biotechnol 38, 1371–1377.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, S.L., Soul, J., Anand, S., Schwartz, J.M., Boot-Handford, R.P., and Hardingham, T.E. (2016). Gene expression changes in damaged osteoarthritic cartilage identify a signature of non-chondrogenic and mechanical responses. Osteoarthritis Cartilage 24, 1431–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckstein, F., Kraines, J.L., Aydemir, A., Wirth, W., Maschek, S., and Hochberg, M.C. (2020). Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of location in the femorotibial joint: Post-hoc analysis of a randomised, placebo-controlled phase ii clinical trial. Ann Rheum Dis 79, 525–528.

    Article  PubMed  Google Scholar 

  • Gao, G., Ding, H., Zhuang, C., and Fan, W. (2018). Effects of hesperidin on H2O2-treated chondrocytes and cartilage in a rat osteoarthritis model. Med Sci Monit 24, 9177–9186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, X., Ma, X., Meng, J., Zhang, C., Ma, K., and Zhou, C. (2009). Role of Wnt-5A in interleukin-1β-induced matrix metalloproteinase expression in rabbit temporomandibular joint condylar chondrocytes. Arthritis Rheum 60, 2714–2722.

    Article  CAS  PubMed  Google Scholar 

  • Gosset, M., Berenbaum, F., Thirion, S., and Jacques, C. (2008). Primary culture and phenotyping of murine chondrocytes. Nat Protoc 3, 1253–1260.

    Article  CAS  PubMed  Google Scholar 

  • Hampel, B., Malisan, F., Niederegger, H., Testi, R., and Jansen-Dürr, P. (2004). Differential regulation of apoptotic cell death in senescent human cells. Exp Gerontol 39, 1713–1721.

    Article  CAS  PubMed  Google Scholar 

  • He, Y., Makarczyk, M.J., and Lin, H. (2020a). Role of mitochondria in mediating chondrocyte response to mechanical stimuli. Life Sci 263, 118602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y., Li, Z., Alexander, P.G., Ocasio-Nieves, B.D., Yocum, L., Lin, H., and Tuan, R.S. (2020b). Pathogenesis of osteoarthritis: Risk factors, regulatory pathways in chondrocytes, and experimental models. Biology 9, 194.

    Article  CAS  PubMed Central  Google Scholar 

  • Hou, A., Chen, P., Tang, H., Meng, H., Cheng, X., Wang, Y., Zhang, Y., and Peng, J. (2018). Cellular senescence in osteoarthritis and anti-aging strategies. Mech Ageing Dev 175, 83–87.

    Article  CAS  PubMed  Google Scholar 

  • Huynh, N.P.T., Zhang, B., and Guilak, F. (2019). High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis. FASEB J 33, 358–372.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, O.H., Kim, C., Laberge, R.M., Demaria, M., Rathod, S., Vasserot, A. P., Chung, J.W., Kim, D.H., Poon, Y., David, N., et al. (2017). Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23, 775–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, C.I., Argyle, D.J., and Clements, D.N. (2016). In vitro models for the study of osteoarthritis. Vet J 209, 40–49.

    Article  PubMed  Google Scholar 

  • Kaewsrichan, J., Wongwitwichot, P., Chandarajoti, K., Chua, K.H., and Ruszymah, B.H.I. (2011). Sequential induction of marrow stromal cells by FGF2 and BMP2 improves their growth and differentiation potential in vivo, Arch Oral Biol 56, 90–101.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Xiong, Y., Chen, W., and Wu, L. (2020). Wnt/β-catenin signaling may induce senescence of chondrocytes in osteoarthritis. Exp Ther Med 20, 2631–2638.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, H., Sohn, J., Shen, H., Langhans, M.T., and Tuan, R.S. (2019a). Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 203, 96–110.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Z., Li, Z., Li, E.N., Li, X., Del Duke, C.J., Shen, H., Hao, T., O’Donnell, B., Bunnell, B.A., Goodman, S.B., et al. (2019b). Osteochondral tissue chip derived from IPSCs: Modeling OA pathologies and testing drugs. Front Bioeng Biotechnol 7, 411.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Kuang, B., Rothrauff, B.B., Tuan, R.S., and Lin, H. (2019). Robust bone regeneration through endochondral ossification of human mesenchymal stem cells within their own extracellular matrix. Biomaterials 218, 119336.

    Article  CAS  PubMed  Google Scholar 

  • Loeser, R.F., Goldring, S.R., Scanzello, C.R., and Goldring, M.B. (2012). Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum 64, 1697–1707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loeser, R.F., Collins, J.A., and Diekman, B.O. (2016). Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12, 412–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmander, L.S., Hellot, S., Dreher, D., Krantz, E.F.W., Kruger, D.S., Guermazi, A., and Eckstein, F. (2014). Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: A randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol 66, 1820–1831.

    Article  CAS  PubMed  Google Scholar 

  • Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, J.A., and Buckwalter, J.A. (2001). Telomere erosion and senescence in human articular cartilage chondrocytes. J Gerontol A Biol Sci Med Sci 56, B172–B179.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J.A., and Buckwalter, J.A. (2002). Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3, 257–264.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J.A., and Buckwalter, J.A. (2003). The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am 85, 106–110.

    Article  PubMed  Google Scholar 

  • Mastbergen, S.C., Jansen, N.W., Bijlsma, J.W., and Lafeber, F.P. (2006). Differential direct effects of cyclo-oxygenase-1/2 inhibition on proteoglycan turnover of human osteoarthritic cartilage: An in vitro study. Arthritis Res Ther 8, R2.

    Article  PubMed  Google Scholar 

  • McCulloch, K., Litherland, G.J., and Rai, T.S. (2017). Cellular senescence in osteoarthritis pathology. Aging Cell 16, 210–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meloni, G.R., Farran, A., Mohanraj, B., Guehring, H., Cocca, R., Rabut, E., Mauck, R.L., and Dodge, G.R. (2019). Recombinant human FGF18 preserves depth-dependent mechanical inhomogeneity in articular cartilage. Eur Cell Mater 38, 23–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neogi, T., and Zhang, Y. (2013). Epidemiology of osteoarthritis. Rheum Dis Clin North Am 39, 1–19.

    Article  PubMed  Google Scholar 

  • O’Neill, T.W., McCabe, P.S., and McBeth, J. (2018). Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol 32, 312–326.

    Article  PubMed  Google Scholar 

  • Park, H., Lee, H.J., An, H., and Lee, K.Y. (2017). Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydr Polym 162, 100–107.

    Article  CAS  PubMed  Google Scholar 

  • Piera-Velazquez, S., Jimenez, S.A., and Stokes, D.G. (2002). Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase. Arthritis Rheum 46, 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Price, J.S., Waters, J.G., Darrah, C., Pennington, C., Edwards, D.R., Donell, S.T., and Clark, I.M. (2002). The role of chondrocyte senescence in osteoarthritis. Aging Cell 1, 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Reker, D., Siebuhr, A.S., Thudium, C.S., Gantzel, T., Ladel, C., Michaelis, M., Aspberg, A., Berchtold, M.W., Karsdal, M.A., Gigout, A., et al. (2020). Sprifermin (rhFGF18) versus vehicle induces a biphasic process of extracellular matrix remodeling in human knee OA articular cartilage ex vivo. Sci Rep 10, 6011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Röhner, E., Seeger, J.B., Hoff, P., Dähn-Wollenberg, S., Perka, C., and Matziolis, G. (2011). Toxicity of polyhexanide and hydrogen peroxide on human chondrocytes in vitro. Orthopedics 34, e290–294.

    Article  PubMed  Google Scholar 

  • Sabha, M., Siaton, B.C., and Hochberg, M.C. (2020). Lorecivivint, an intraarticular potential disease-modifying osteoarthritis drug. Expert Opin Investig Drugs 29, 1339–1346.

    Article  CAS  PubMed  Google Scholar 

  • Samvelyan, H.J., Hughes, D., Stevens, C., and Staines, K.A. (2020). Models of osteoarthritis: Relevance and new insights. Calcif Tissue Int doi: https://doi.org/10.1007/s00223-020-00670-x.

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, Y., Shen, H., Guo, D., Sun, X., Sun, Y., Hong, N., Wang, X., Xie, C., Zhao, Y., He, Q., et al. (2020). Recent developments in regenerative ophthalmology. Sci China Life Sci 63, 1450–1490.

    Article  PubMed  Google Scholar 

  • Sherr, C.J., Beach, D., and Shapiro, G.I. (2016). Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov 6, 353–367.

    Article  CAS  PubMed  Google Scholar 

  • Suliman, S., Ali, H.R.W., Karlsen, T.A., Amiaud, J., Mohamed-Ahmed, S., Layrolle, P., Costea, D.E., Brinchmann, J.E., and Mustafa, K. (2019). Impact of humanised isolation and culture conditions on stemness and osteogenic potential of bone marrow derived mesenchymal stromal cells. Sci Rep 9, 16031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szychlinska, M.A., Stoddart, M.J., D’Amora, U., Ambrosio, L., Alini, M., and Musumeci, G. (2017). Mesenchymal stem cell-based cartilage regeneration approach and cell senescence: Can we manipulate cell aging and function? Tissue Eng Part B Rev 23, 529–539.

    Article  PubMed  Google Scholar 

  • Tuli, R., Tuli, S., Nandi, S., Wang, M.L., Alexander, P.G., Haleem-Smith, H., Hozack, W.J., Manner, P.A., Danielson, K.G., and Tuan, R.S. (2003). Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 21, 681–693.

    Article  CAS  PubMed  Google Scholar 

  • Vincent, T.L. (2020). Of mice and men: converging on a common molecular understanding of osteoarthritis. Lancet Rheumatol 2, e633–e645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Westacott, C.I., Whicher, J.T., Barnes, I.C., Thompson, D., Swan, A.J., and Dieppe, P.A. (1990). Synovial fluid concentration of five different cytokines in rheumatic diseases. Ann Rheum Dis 49, 676–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, H., Chen, C., Chen, H., Duan, X., Li, J., Zhou, Y., Zeng, W., and Yang, L. (2020). Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging 12, 12750–12770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y.H.K., Ogando, C.R., Wang See, C., Chang, T.Y., and Barabino, G. A. (2018). Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9, 131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazici, Y., McAlindon, T.E., Gibofsky, A., Lane, N.E., Clauw, D., Jones, M., Bergfeld, J., Swearingen, C.J., DiFrancesco, A., Simsek, I., et al. (2020). Lorecivivint, a novel intraarticular CDC-like kinase 2 and dual-specificity tyrosine phosphorylation-regulated kinase 1A inhibitor and Wnt pathway modulator for the treatment of knee osteoarthritis: a phase II randomized trial. Arthritis Rheumatol 72, 1694–1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Park, Y.S., Kim, H.S., Kim, H.Y., Jin, Y.M., Jung, S.C., Ryu, K.H., and Jo, I. (2014). Characterization of long-term in vitro culture-related alterations of human tonsil-derived mesenchymal stem cells: role for CCN1 in replicative senescence-associated increase in osteogenic differentiation. J Anat 225, 510–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yudoh, K., van Trieu, N., Nakamura, H., Hongo-Masuko, K., Kato, T., and Nishioka, K. (2005). Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: Oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Ther 7, R380–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, W., Feng, Z., You, S., Zhang, H., Tao, Z., Wang, Q., Chen, H., and Wu, Y. (2017). Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. Int Immunopharmacol 45, 135–147.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Orthopaedic Surgery at the University of Pittsburgh and the Albert B. Ferguson, Jr., M.D. Orthopaedic Fund of The Pittsburgh Foundation. Ning Wang is a medical student at the University of Pittsburgh School of Medicine supported by the Central South University Xiangya School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Lin.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest. Life Length SL did not provide any financial support and did not influence the results reported in this study. With the approval from the Institutional Review Boards (University of Pittsburgh and University of Washington), the cartilage tissues and bone marrows were collected from the patients who underwent total knee joint replacement, which were used to isolate chondrocytes and mesenchymal stem cells, respectively.

Supplementary Information

11427_2021_1933_MOESM1_ESM.pdf

Engineering Osteoarthritic Cartilage Model through Differentiating Senescent Human Mesenchymal Stem Cells for Testing Disease-Modifying Drugs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., He, Y., Liu, S. et al. Engineering osteoarthritic cartilage model through differentiating senescent human mesenchymal stem cells for testing disease-modifying drugs. Sci. China Life Sci. 65, 309–327 (2022). https://doi.org/10.1007/s11427-021-1933-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1933-7

Keywords

Navigation