Skip to main content
Log in

Abundance-weighted plant functional trait variation differs between terrestrial and wetland habitats along wide climatic gradients

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Patterns of plant trait variation across spatial scales are important for understanding ecosystem functioning and services. However, habitat-related drivers of these patterns are poorly understood. In a conceptual model, we ask whether and how the patterns of within- and among-site plant trait variation are driven by habitat type (terrestrial vs. wetland) across large climatic gradients. We tested these through spatial-hierarchical-sampling of leaves in herbaceous-dominated terrestrial and wetland communities within each of 26 sites across China. For all 13 plant traits, within-site variation was larger than among-site variation in both terrestrial and wetland habitats. Within-site variation was similar in most leaf traits related to carbon and nutrient economics but larger in specific leaf area and size-related traits (plant height, leaf area and thickness) in wetland compared to terrestrial habitats. Among-site variation was larger in terrestrial than wetland habitats for 10 leaf traits but smaller for plant height, leaf area and leaf nitrogen. Our results indicate the important role of local ecological processes in driving plant trait variation among coexisting species and the dependence of functional variation across habitats on traits considered. These findings will help to understand and predict the effects of climatic or land-use changes on ecosystem functioning and services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baraloto, C., Hardy, O.J., Paine, C.E.T., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.A., Molino, J.F., Sabatier, D., Savolainen, V., et al. (2012). Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. J Ecol 100, 690–701.

    Google Scholar 

  • Borer, E.T., Bracken, M.E.S., Seabloom, E.W., Smith, J.E., Cebrian, J., Cleland, E.E., Elser, J.J., Fagan, W.F., Gruner, D.S., Harpole, W.S., et al. (2013). Global biogeography of autotroph chemistry: is insolation a driving force? Oikos 122, 1121–1130.

    CAS  Google Scholar 

  • Botta-Dukát, Z. (2005). Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16, 533–540.

    Google Scholar 

  • Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S.M., Botta-Dukát, Z., Chytrý, M., Field, R., Jansen, F., et al. (2018). Global trait-environment relationships of plant communities. Nat Ecol Evol 2, 1906–1917.

    PubMed  Google Scholar 

  • Carmona, C.P., Azcárate, F.M., de Bello, F., Ollero, H.S., Lepš, J., and Peco, B. (2012). Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall. J Appl Ecol 49, 1084–1093.

    Google Scholar 

  • Cornwell, W.K., and Ackerly, D.D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79, 109–126.

    Google Scholar 

  • Cornwell, W.K., Schwilk, D.W., and Ackerly, D.D. (2006). A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471.

    PubMed  Google Scholar 

  • Cornwell, W.K., Westoby, M., Falster, D.S., FitzJohn, R.G., O’Meara, B.C., Pennell, M.W., McGlinn, D.J., Eastman, J.M., Moles, A.T., Reich, P.B., et al. (2014). Functional distinctiveness of major plant lineages. J Ecol 102, 345–356.

    Google Scholar 

  • de Bello, F., Thuiller, W., Lepš, J., Choler, P., Clément, J.C., Macek, P., Sebastià, M.T., and Lavorel, S. (2009). Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J Veg Sci 20, 475–486.

    Google Scholar 

  • Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., et al. (2016). The global spectrum of plant form and function. Nature 529, 167–171.

    PubMed  Google Scholar 

  • Ding, Y., Zang, R., Letcher, S.G., Liu, S., and He, F. (2012). Disturbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos 121, 1263–1270.

    Google Scholar 

  • Farquhar, G.D., Ehleringer, J.R., and Hubick, K.T. (1989). Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40, 503–537.

    CAS  Google Scholar 

  • Fort, F., and Freschet, G. T. (2020). Plant ecological indicator values as predictors of fine-root trait variations. J Ecol 108, 1565–1577.

    Google Scholar 

  • Freschet, G.T., Cornelissen, J.H.C., van Logtestijn, R.S.P., and Aerts, R. (2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora. J Ecol 98, 362–373.

    Google Scholar 

  • Freschet, G.T., Dias, A.T.C., Ackerly, D.D., Aerts, R., van Bodegom, P.M., Cornwell, W.K., Dong, M., Kurokawa, H., Liu, G., Onipchenko, V.G., et al. (2011). Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Glob Ecol Biogeogr 20, 755–765.

    Google Scholar 

  • Fu, H., Yuan, G., Jeppesen, E., Ge, D., Li, W., Zou, D., Huang, Z., Wu, A., and Liu, Q. (2019). Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci Total Environ 687, 206–217.

    CAS  PubMed  Google Scholar 

  • Funk, J.L., Larson, J.E., Ames, G.M., Butterfield, B.J., Cavender-Bares, J., Firn, J., Laughlin, D.C., Sutton-Grier, A.E., Williams, L., and Wright, J. (2017). Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol Rev 92, 1156–1173.

    PubMed  Google Scholar 

  • Garnier, E., Cortez, J., Billès, G., Navas, M.L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., et al. (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637.

    Google Scholar 

  • Grime, J.P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111, 1169–1194.

    Google Scholar 

  • Gross, K. (2008). Positive interactions among competitors can produce species-rich communities. Ecol Lett 11, 929–936.

    PubMed  Google Scholar 

  • He, N., Liu, C., Piao, S., Sack, L., Xu, L., Luo, Y., He, J., Han, X., Zhou, G., Zhou, X., et al. (2019). Ecosystem traits linking functional traits to macroecology. Trends Ecol Evol 34, 200–210.

    PubMed  Google Scholar 

  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25, 1965–1978.

    Google Scholar 

  • Högberg, P. (1997). 15N natural abundance in soil-plant systems. New Phytol 137, 179–203.

    PubMed  Google Scholar 

  • Hu, Y.K., Pan, X., Liu, G.F., Li, W.B., Dai, W.H., Tang, S.L., Zhang, Y.L., Xiao, T., Chen, L.Y., Xiong, W., et al. (2015). Novel evidence for within-species leaf economics spectrum at multiple spatial scales. Front Plant Sci 6, 901.

    PubMed  PubMed Central  Google Scholar 

  • Hulshof, C.M., and Swenson, N.G. (2010). Variation in leaf functional trait values within and across individuals and species: an example from a Costa Rican dry forest. Funct Ecol 24, 217–223.

    Google Scholar 

  • IPCC. (2013). In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • Jones, J.B. (2001). Laboratory Guide for Conducting Soil Tests and Plant Analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Katabuchi, M., Kurokawa, H., Davies, S.J., Tan, S., and Nakashizuka, T. (2012). Soil resource availability shapes community trait structure in a species-rich dipterocarp forest. J Ecol 100, 643–651.

    Google Scholar 

  • Keddy, P.A. (1992). Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3, 157–164.

    Google Scholar 

  • Kraft, N.J.B., Valencia, R., and Ackerly, D.D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582.

    CAS  PubMed  Google Scholar 

  • Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J., and Laughlin, D.C. (2016). Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol 104, 1299–1310.

    Google Scholar 

  • Lamanna, C., Blonder, B., Violle, C., Kraft, N.J.B., Sandel, B., Šímová, I., Donoghue, J.C., Svenning, J.C., McGill, B.J., Boyle, B., et al. (2014). Functional trait space and the latitudinal diversity gradient. Proc Natl Acad Sci USA 111, 13745–13750.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, G., Freschet, G.T., Pan, X., Cornelissen, J.H.C., Li, Y., and Dong, M. (2010). Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol 188, 543–553.

    PubMed  Google Scholar 

  • Ma, W.L., Shi, P.L., Li, W.H., He, Y.T., Zhang, X.Z., Shen, Z.X., and Chai, S.Y. (2010). Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Sci China Life Sci 53, 1142–1151.

    PubMed  Google Scholar 

  • Mayfield, M.M., and Levine, J.M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13, 1085–1093.

    PubMed  Google Scholar 

  • Messier, J., McGill, B.J., and Lechowicz, M.J. (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13, 838–848.

    PubMed  Google Scholar 

  • Ordoñez, J.C., van Bodegom, P.M., Witte, J.P.M., Wright, I.J., Reich, P.B., and Aerts, R. (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18, 137–149.

    Google Scholar 

  • Peñuelas, J., and Filella, I. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3, 151–156.

    Google Scholar 

  • Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61, 167–234.

    Google Scholar 

  • Pierce, S., Brusa, G., Sartori, M., and Cerabolini, B.E.L. (2012). Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann Bot 109, 1047–1053.

    PubMed  PubMed Central  Google Scholar 

  • Pierce, S., Negreiros, D., Cerabolini, B.E.L., Kattge, J., Díaz, S., Kleyer, M., Shipley, B., Wright, S.J., Soudzilovskaia, N.A., Onipchenko, V. G., et al. (2017). A global method for calculating plant CSR ecological strategies applied across biomes worldwide. Funct Ecol 31, 444–457.

    Google Scholar 

  • Price, J, Tamme, R., Gazol, A., de Bello, F., Takkis, K., Uria-Diez, J., Kasari, L., and Partel, M. (2017). Within-community environmental variability drives trait variability in species-rich grasslands. J Veg Sci 28, 303–312.

    Google Scholar 

  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Rao, C.R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol 21, 24–43.

    Google Scholar 

  • Sartoretto, P. (1991). The pH factor. Dayton: W-A-Clearly Chemical.

  • Shipley, B., De Bello, F., Cornelissen, J.H.C., Laliberté, E., Laughlin, D.C., and Reich, P.B. (2016). Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931.

    PubMed  Google Scholar 

  • Siefert, A., Ravenscroft, C., Weiser, M.D., and Swenson, N.G. (2013). Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees. Glob Ecol Biogeogr 22, 682–691.

    Google Scholar 

  • Sosnová, M., van Diggelen, R., Macek, P., and Klimešová, J. (2011). Distribution of clonal growth traits among wetland habitats. Aquat Bot 95, 88–93.

    Google Scholar 

  • Stark, J., Lehman, R., Crawford, L., Enquist, B.J., and Blonder, B. (2017). Does environmental heterogeneity drive functional trait variation? A test in montane and alpine meadows. Oikos 126, 1650–1659.

    Google Scholar 

  • Suding, K.N., Lavorel, S., Chapin, F.S., Cornelissen, J.H.C., Díaz, S., Garnier, E., Goldberg, D., Hooper, D.U., Jackson, S.T., and Navas, M.L. (2008). Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14, 1125–1140.

    Google Scholar 

  • Swenson, N. (2014). Functional and Phylogenetic Ecology in R. New York: Springer-Verlag.

    Google Scholar 

  • Taudiere, A., and Violle, C. (2016). cati: an R package using functional traits to detect and quantify multi-level community assembly processes. Ecography 39, 699–708.

    Google Scholar 

  • Tian, D., Yan, Z., Ma, S., Ding, Y., Luo, Y., Chen, Y., Du, E., Han, W., Kovacs, E.D., Shen, H., et al. (2019). Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Sci China Life Sci 62, 1047–1057.

    CAS  PubMed  Google Scholar 

  • Tian, D., Yan, Z., Niklas, K.J., Han, W., Kattge, J., Reich, P.B., Luo, Y., Chen, Y., Tang, Z., Hu, H., et al. (2018). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. Natl Sci Rev 5, 728–739.

    CAS  Google Scholar 

  • Valverde-Barrantes, O.J., Freschet, G.T., Roumet, C., and Blackwood, C.B. (2017). A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol 215, 1562–1573.

    PubMed  Google Scholar 

  • van der Valk, A.G. (2006). The Biology of Freshwater Wetlands. Oxford: Oxford University Press.

    Google Scholar 

  • Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., and Garnier, E. (2007). Let the concept of trait be functional! Oikos 116, 882–892.

    Google Scholar 

  • Walter, H. (1985). Vegetation of the Earth and Ecological Systems of the Geo-biosphere. 3rd ed. Berlin: Springer-Verlag.

    Google Scholar 

  • Webb, C.O., and Donoghue, M.J. (2005). Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5, 181–183.

    Google Scholar 

  • Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227.

    CAS  Google Scholar 

  • Wright, I.J., Reich, P.B., and Westoby, M. (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol 15, 423–434.

    Google Scholar 

  • Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., et al. (2004). The worldwide leaf economics spectrum. Nature 428, 821–827.

    CAS  PubMed  Google Scholar 

  • Yan, Z., Han, W., Peñuelas, J., Sardans, J., Elser, J.J., Du, E., Reich, P.B., and Fang, J. (2016). Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecol Lett 19, 1237–1246.

    PubMed  Google Scholar 

  • Yang, X., Huang, Z., Zhang, K., and Cornelissen, J.H.C. (2015). C:N:P stoichiometry of Artemisia species and close relatives across northern China: unravelling effects of climate, soil and taxonomy. J Ecol 103, 1020–1031.

    Google Scholar 

  • Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J., O’Meara, B.C., Moles, A.T., Reich, P.B., et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFC0506200), the National Natural Science Foundation of China (31670429, 31400346, 31470712 and 31901149), and the Royal Netherlands Academy of Arts and Sciences (KNAW, CEP grant 12CDP007) for research visits of J.H.C.C. to China and of Y.K.H., Y.B.S., G.F.L. and X.P. to Vrije Universiteit Amsterdam. We are very grateful to Xue-Hua Ye, Tao Xiao, Ling-Yun Chen, Shuang-Li Tang, Meng-Yao Zhou, Wei Xiong, Can Jiang, Ya-Lin Zhang, Hong-Ke Xu, Yan-Fang Fang, Ze-Ning Jin, Shu-Min Zhang, and Xu-Yan Liu for their help in fieldwork and/or laboratory analysis. We also thank Hai-Lang Zhou, Ke-Liang Zhang, Zhi-Xi Fu and Wei-Bo Du for their assistance in plant identification.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-Bin Song or Ming Dong.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

11427_2020_1766_MOESM1_ESM.pdf

Abundance-weighted plant functional trait variation differs between terrestrial and wetland habitats along wide climatic gradients

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YK., Liu, GF., Pan, X. et al. Abundance-weighted plant functional trait variation differs between terrestrial and wetland habitats along wide climatic gradients. Sci. China Life Sci. 64, 593–605 (2021). https://doi.org/10.1007/s11427-020-1766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1766-1

Keywords

Navigation