Skip to main content
Log in

A cyclin protein governs the infectious and sexual life cycles of Cryptococcus neoformans

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Cell cycle is a fundamental process underlying growth and development in evolutionarily diverse organisms, including fungi. In human fungal pathogens, cell cycle control generally determines their life cycles, either in the environment or during infections. Thus, cell cycle components can potentially serve as important targets for the development of antifungal strategy against fungal infections. Here, in Cryptococcus neoformans, the most common cause of fatal fungal meningitis, we show that a previously uncharacterized B-type cyclin named Cbc1 is essential for both its infectious and sexual cycles. We reveal that Cbc1 coordinates various sexual differentiation and molecular processes, including meiosis. Especially, the absence of Cbc1 abolishes formation of sexual spores in C. neoformans, which are presumed infectious particles. Cbc1 is also required for the major Cryptococcus pathogenic attributes. Virulence assessment using the murine model of cryptococcosis revealed that the cbc1 mutant is avirulent. Together, our results provide an important insight into how C. neoformans employs shared cell cycle regulation to coordinate its infectious and sexual cycles, which are considered crucial for virulence evolution and the production of infectious spores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P.J.G. S. (2002). An overview of the cell cycle. In Molecular Biology of the Cell (New York: Garland Science).

    Google Scholar 

  • Alspaugh, J.A. (2015). Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fung Genet Biol 78, 55–58.

    Article  CAS  Google Scholar 

  • Bahn, Y.S., and Jung, K.W. (2013). Stress signaling pathways for the pathogenicity of Cryptococcus. Eukaryot Cell 12, 1564–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardetti, P., Castanheira, S.M., Valerius, O., Braus, G.H., and Pérez-Martín, J. (2019). Cytoplasmic retention and degradation of a mitotic inducer enable plant infection by a pathogenic fungus. eLife 8, e48943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom, J., and Cross, F.R. (2007). Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8, 149–160.

    Article  CAS  PubMed  Google Scholar 

  • Botts, M.R., and Hull, C.M. (2010). Dueling in the lung: how Cryptococcus spores race the host for survival. Curr Opin Microbiol 13, 437–442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brilhante, R.S.N., España, J.D.A., de Alencar, L.P., Pereira, V.S., Castelo-Branco, D.S.C.M., Pereira-Neto, W.A., Cordeiro, R.A., Sidrim, J.J.C., and Rocha, M.F.G. (2017). An alternative method for the analysis of melanin production in Cryptococcus neoformans sensu lato and Cryptococcus gattii sensu lato. Mycoses 60, 697–702.

    Article  CAS  PubMed  Google Scholar 

  • Brown, G.D., Denning, D.W., Gow, N.A.R., Levitz, S.M., Netea, M.G., and White, T.C. (2012). Hidden killers: human fungal infections. Sci Transl Med 4, 165rv13.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Zhou, S., Wang, Q., Chen, X., Pan, T., and Liu, H. (2000). Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in Candida albicans. Mol Cell Biol 20, 8696–8708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, G.M. (2000). The eukaryotic cell cycle. In The Cell: A Molecular Approach (Sunderland (MA): Sinauer Associates).

    Google Scholar 

  • DeCesare, J.M., and Stuart, D.T. (2012). Among B-type cyclins only CLB5 and CLB6 promote premeiotic S phase in Saccharomyces cerevisiae. Genetics 190, 1001–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirick, L., Goetsch, L., Ammerer, G., and Byers, B. (1998). Regulation of meiotic S phase by Ime2 and a Clb5,6-associated kinase in Saccharomyces cerevisiae. Science 281, 1854–1857.

    Article  CAS  PubMed  Google Scholar 

  • Fan, Y., and Lin, X. (2018). Multiple applications of a transient CRISPR-Cas9 coupled with electroporation (TRACE) system in the Cryptococcus neoformans species complex. Genetics 208, 1357–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fay, D.S. (2005). The cell cycle and development: lessons from C. elegans. Semin Cell Dev Biol 16, 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Fraser, J.A., Giles, S.S., Wenink, E.C., Geunes-Boyer, S.G., Wright, J.R., Diezmann, S., Allen, A., Stajich, J.E., Dietrich, F.S., Perfect, J.R., et al. (2005). Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437, 1360–1364.

    Article  CAS  PubMed  Google Scholar 

  • Fu, C., Sun, S., Billmyre, R.B., Roach, K.C., and Heitman, J. (2015). Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fung Genet Biol 78, 65–75.

    Article  Google Scholar 

  • Fu, J., Morris, I.R., and Wickes, B.L. (2013). The production of monokaryotic hyphae by Cryptococcus neoformans can be induced by high temperature arrest of the cell cycle and is independent of same-sex mating. PLoS Pathog 9, e1003335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukada, F., Kodama, S., Nishiuchi, T., Kajikawa, N., and Kubo, Y. (2019). Plant pathogenic fungi Colletotrichum and Magnaporthe share a common G1 phase monitoring strategy for proper appressorium development. New Phytol 222, 1909–1923.

    Article  CAS  PubMed  Google Scholar 

  • Fukada, F., and Kubo, Y. (2015). Colletotrichum orbiculare regulates cell cycle G1/S progression via a two-component GAP and a GTPase to establish plant infection. Plant Cell 27, 2530–2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S., and Fink, G.R. (1999). Ploidy regulation of gene expression. Science 285, 251–254.

    Article  CAS  PubMed  Google Scholar 

  • García-Rodas, R., Cordero, R.J.B., Trevijano-Contador, N., Janbon, G., Moyrand, F., Casadevall, A., and Zaragoza, O. (2014). Capsule growth in Cryptococcus neoformans is coordinated with cell cycle progression. mBio 5, e00945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García-Rodas, R., Trevijano-Contador, N., Román, E., Janbon, G., Moyrand, F., Pla, J., Casadevall, A., and Zaragoza, O. (2015). Role of Cln1 during melanization of Cryptococcus neoformans. Front Microbiol 6, 798.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giles, S.S., Dagenais, T.R.T., Botts, M.R., Keller, N.P., and Hull, C.M. (2009). Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect Immun 77, 3491–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunbin, K.V., Suslov, V.V., Turnaev, I.I., Afonnikov, D.A., and Kolchanov, N.A. (2011). Molecular evolution of cyclin proteins in animals and fungi. BMC Evol Biol 11, 224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heitman, J., Carter, D.A., Dyer, P.S., and Soll, D.R. (2014). Sexual reproduction of human fungal pathogens. Cold Spring Harb Perspect Med 4, a019281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, M., and Hull, C.M. (2017). Sporulation: how to survive on planet Earth (and beyond). Curr Genet 63, 831–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idnurm, A., Bahn, Y.S., Nielsen, K., Lin, X., Fraser, J.A., and Heitman, J. (2005). Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat Rev Microbiol 3, 753–764.

    Article  CAS  PubMed  Google Scholar 

  • Jung, K.W., Yang, D.H., Maeng, S., Lee, K.T., So, Y.S., Hong, J., Choi, J., Byun, H.J., Kim, H., Bang, S., et al. (2015). Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Commun 6, 6757.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, J.N., and Panepinto, J.C. (2016). Morphotype-specific effector functions of Cryptococcus neoformans PUM1. Sci Rep 6, 23638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelliher, C.M., and Haase, S.B. (2017). Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans. Curr Genet 63, 803–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelliher, C.M., Leman, A.R., Sierra, C.S., and Haase, S.B. (2016). Investigating conservation of the cell-cycle-regulated transcriptional program in the fungal pathogen, Cryptococcus neoformans. PLoS Genet 12, e1006453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kozel, T.R. (1995). Virulence factors of Cryptococcus neoformans. Trends Microbiol 3, 295–299.

    Article  CAS  PubMed  Google Scholar 

  • Kwon-Chung, K.J. (1976). Morphogenesis of Filobasidiella Neoformans, the sexual state of Cryptococcus Neoformans. Mycologia 68, 821–833.

    Article  CAS  PubMed  Google Scholar 

  • Lin, X., Hull, C.M., and Heitman, J. (2005). Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434, 1017–1021.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., He, G.J., Chen, L., Zheng, J., Chen, Y., Shen, L., Tian, X., Li, E., Yang, E., Liao, G., et al. (2018). Genetic basis for coordination of meiosis and sexual structure maturation in Cryptococcus neoformans. eLife 7, e38683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, T.B., Wang, Y., Stukes, S., Chen, Q., Casadevall, A., and Xue, C. (2011). The F-Box protein Fbp1 regulates sexual reproduction and virulence in Cryptococcus neoformans. Eukaryot Cell 10, 791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, M., Feretzaki, M., Li, W., Floyd-Averette, A., Mieczkowski, P., Dietrich, F.S., and Heitman, J. (2013). Unisexual and heterosexual meiotic reproduction generate aneuploidy and phenotypic diversity de novo in the yeast Cryptococcus neoformans. PLoS Biol 11, e1001653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Martín, J., Bardetti, P., Castanheira, S., de la Torre, A., and Tenorio-Gómez, M. (2016). Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Semin Cell Dev Biol 57, 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Raithatha, S.A., and Stuart, D.T. (2008). The Saccharomyces cerevisiae CLB5 promoter contains two middle sporulation elements (MSEs) that are differentially regulated during sporulation. Yeast 25, 259–272.

    Article  CAS  PubMed  Google Scholar 

  • Rajasingham, R., Smith, R.M., Park, B.J., Jarvis, J.N., Govender, N.P., Chiller, T.M., Denning, D.W., Loyse, A., and Boulware, D.R. (2017). Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17, 873–881.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, M.L., Alviano, C.S., and Travassos, L.R. (1999). Pathogenicity of Cryptococcus neoformans: virulence factors and immunological mechanisms. Microb Infect 1, 293–301.

    Article  CAS  Google Scholar 

  • Ryder, L.S., and Talbot, N.J. (2015). Regulation of appressorium development in pathogenic fungi. Curr Opin Plant Biol 26, 8–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Filippo, J., Sung, P., and Klein, H. (2008). Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77, 229–257.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, D.G.O., Aves, S.J., and Talbot, N.J. (2010). Cell cycle-mediated regulation of plant infection by the rice blast fungus. Plant Cell 22, 497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer, K.A. (1998). The cell cycle: a review. Vet Pathol 35, 461–478.

    Article  CAS  PubMed  Google Scholar 

  • Sun, S., Billmyre, R.B., Mieczkowski, P.A., and Heitman, J. (2014). Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans. PLoS Genet 10, e1004849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, S., Coelho, M.A., David-Palma, M., Priest, S.J., and Heitman, J. (2019). The evolution of sexual reproduction and the mating-type locus: links to pathogenesis of Cryptococcus human pathogenic fungi. Annu Rev Genet 53, 417–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, R., Taguchi, H., Takeo, K., Miyaji, M., and Nishimura, K. (1996). Determination of ploidy in Cryptococcus neoformans by flow cytometry. Med Mycol 34, 299–301.

    Article  CAS  Google Scholar 

  • Tian, X., He, G.J., Hu, P., Chen, L., Tao, C., Cui, Y.L., Shen, L., Ke, W., Xu, H., Zhao, Y., et al. (2018). Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nat Microbiol 3, 698–707.

    Article  CAS  PubMed  Google Scholar 

  • Velagapudi, R., Hsueh, Y.P., Geunes-Boyer, S., Wright, J.R., and Heitman, J. (2009). Spores as infectious propagules of Cryptococcus neoformans. Infect Immun 77, 4345–4355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., and Lin, X. (2011). Mechanisms of unisexual mating in Cryptococcus neoformans. Fung Genet Biol 48, 651–660.

    Article  Google Scholar 

  • Wang, L., Tian, X., Gyawali, R., and Lin, X. (2013). Fungal adhesion protein guides community behaviors and autoinduction in a paracrine manner. Proc Natl Acad Sci USA 110, 11571–11576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Tian, X., Gyawali, R., Upadhyay, S., Foyle, D., Wang, G., Cai, J. J., and Lin, X. (2014). Morphotype transition and sexual reproduction are genetically associated in a ubiquitous environmental pathogen. PLoS Pathog 10, e1004185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, L., Zhai, B., and Lin, X. (2012). The link between morphotype transition and virulence in Cryptococcus neoformans. PLoS Pathog 8, e1002765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittenberg, C., and Reed, S.I. (2005). Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 24, 2746–2755.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita, A., Sakuno, T., Watanabe, Y., and Yamamoto, M. (2017). Analysis of Schizosaccharomyces pombe Meiosis. Cold Spring Harb Protoc 2017(9), pdb.top079855.

  • Zhao, Y., Lin, J., Fan, Y., and Lin, X. (2019). Life cycle of Cryptococcus neoformans. Annu Rev Microbiol 73, 17–42.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X., Wang, Y., and Wang, Y. (2004). Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 23, 1845–1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Guang-Jun He for critical reading and helpful suggestions. This work was financially supported by the National Science and Technology Major Project (2018ZX10101004), the Key Research Program of the Chinese Academy of Sciences (QYZDB-SSW-SSMC040), and the National Natural Science Foundation of China (31770163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linqi Wang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest. The mouse experimental design and protocols used in this study were approved by the Regulation of the Institute of Microbiology, Chinese Academy of Sciences of Research Ethics Committee (permit No. SQIM-CAS007). All mouse experimental procedures were performed in accordance with the Regulations for the Administration of Affairs Concerning Experimental Animals approved by the State Council of People’s Republic of China.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Liu, L., Ke, W. et al. A cyclin protein governs the infectious and sexual life cycles of Cryptococcus neoformans. Sci. China Life Sci. 64, 1336–1345 (2021). https://doi.org/10.1007/s11427-020-1697-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1697-3

Navigation