Skip to main content
Log in

Cellular senescence: from anti-cancer weapon to anti-aging target

  • Review
  • From CAS & CAE Members
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Cellular senescence (CS) is a state of stable cell cycle arrest characterized by the production and secretion of inflammatory molecules. Early studies described oncogene-induced senescence (OIS) as a barrier to tumorigenesis, such that the therapeutic induction of CS might represent a rational anti-cancer strategy. Indeed, the validity of this approach has been borne out by the development and approval of the cyclin-dependent kinase (CDK) inhibitor palbociclib for the treatment of breast cancer. Apart from tumors, senescent cells have also been shown to accumulate during natural mammalian aging, where they produce detrimental effects on the physiology of surrounding tissues. Thus, pharmacological senescent cell depletion has been proposed as an approach to delay age-related functional decline; this has been formally demonstrated in animal models. In this review article, we describe the current mechanistic understanding of cellular senescence at the molecular level and how it informs the development of new therapeutic strategies to combat cancer and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta, J.C., and Gil, J. (2012). Senescence: a new weapon for cancer therapy. Trends Cell Biol 22, 211–219.

    Article  CAS  PubMed  Google Scholar 

  • Acosta, J.C., O’Loghlen, A., Banito, A., Guijarro, M.V., Augert, A., Raguz, S., Fumagalli, M., Da Costa, M., Brown, C., Popov, N., et al. (2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, P.B., Yuan, L., Yang, P., Sun, T., Chen, R., Xiang, H., Chen, J., Wu, H., Radiloff, D.R., and Wang, X.F. (2015). EGF promotes mammalian cell growth by suppressing cellular senescence. Cell Res 25, 135–138.

    Article  CAS  PubMed  Google Scholar 

  • Alhosin, M., Omran, Z., Zamzami, M.A., Al-Malki, A.L., Choudhry, H., Mousli, M., and Bronner, C. (2016). Signalling pathways in UHRF1-dependent regulation of tumor suppressor genes in cancer. J Exp Clin Cancer Res 35, 174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anders, L., Ke, N., Hydbring, P., Choi, Y.J., Widlund, H.R., Chick, J.M., Zhai, H., Vidal, M., Gygi, S.P., Braun, P., et al. (2011). A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20, 620–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y., and Shirakawa, M. (2008). Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455, 818–821.

    Article  CAS  PubMed  Google Scholar 

  • Arita, K., Isogai, S., Oda, T., Unoki, M., Sugita, K., Sekiyama, N., Kuwata, K., Hamamoto, R., Tochio, H., Sato, M., et al. (2012). Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc Natl Acad Sci USA 109, 12950–12955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avvakumov, G.V., Walker, J.R., Xue, S., Li, Y., Duan, S., Bronner, C., Arrowsmith, C.H., and Dhe-Paganon, S. (2008). Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455, 822–825.

    Article  CAS  PubMed  Google Scholar 

  • Baar, M.P., Brandt, R.M.C., Putavet, D.A., Klein, J.D.D., Derks, K.W.J., Bourgeois, B.R.M., Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D.A., et al. (2017). Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, D.J., Childs, B.G., Durik, M., Wijers, M.E., Sieben, C.J., Zhong, J., A. Saltness, R., Jeganathan, K.B., Verzosa, G.C., Pezeshki, A., et al. (2016). Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, D.J., Wijshake, T., Tchkonia, T., LeBrasseur, N.K., Childs, B.G., van de Sluis, B., Kirkland, J.L., and van Deursen, J.M. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostick, M., Kim, J.K., Estève, P.O., Clark, A., Pradhan, S., and Jacobsen, S.E. (2007). UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764.

    Article  CAS  PubMed  Google Scholar 

  • Bracken, A.P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beekman, C., Theilgaard-Mönch, K., Minucci, S., Porse, B.T., Marine, J.C., et al. (2007). The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21, 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braig, M., Lee, S., Loddenkemper, C., Rudolph, C., Peters, A.H.F.M., Schlegelberger, B., Stein, H., Dörken, B., Jenuwein, T., and Schmitt, C. A. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665.

    Article  CAS  PubMed  Google Scholar 

  • Burd, C.E., Sorrentino, J.A., Clark, K.S., Darr, D.B., Krishnamurthy, J., Deal, A.M., Bardeesy, N., Castrillon, D.H., Beach, D.H., and Sharpless, N.E. (2013). Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell 152, 340–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi, J. (2013). Aging, cellular senescence, and cancer. Annu Rev Physiol 75, 685–705.

    Article  CAS  PubMed  Google Scholar 

  • Catanzaro, J.M., Sheshadri, N., Pan, J.A., Sun, Y., Shi, C., Li, J., Powers, R. S., Crawford, H.C., and Zong, W.X. (2014). Oncogenic Ras induces inflammatory cytokine production by upregulating the squamous cell carcinoma antigens SerpinB3/B4. Nat Commun 5, 3729.

    Article  CAS  PubMed  Google Scholar 

  • Chang, J., Wang, Y., Shao, L., Laberge, R.M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N.E., Ding, S., Feng, W., et al. (2016). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22, 78–83.

    Article  CAS  PubMed  Google Scholar 

  • Childs, B.G., Baker, D.J., Wijshake, T., Conover, C.A., Campisi, J., and van Deursen, J.M. (2016). Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, M., Yin, T., Chen, R., Xiang, H., Yuan, L., Ding, Y., Pan, C.C., Tang, Z., Alexander, P.B., Li, Q.J., et al. (2018). CD36 initiates the secretory phenotype during the establishment of cellular senescence. EMBO Rep 19, pii: e45274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collado, M., Blasco, M.A., and Serrano, M. (2007). Cellular senescence in cancer and aging. Cell 130, 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Collado, M., and Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10, 51–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppé, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis 5, 99–118.

    Article  CAS  Google Scholar 

  • Coppé, J.P., Kauser, K., Campisi, J., and Beauséjour, C.M. (2006). Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem 281, 29568–29574.

    Article  PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna, F., Reaper, P.M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N.P., and Jackson, S.P. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198.

    Article  PubMed  CAS  Google Scholar 

  • DALYs, G.B.D., and Collaborators, H. (2017). Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1260–1344.

    Article  Google Scholar 

  • De Cecco, M., Ito, T., Petrashen, A.P., Elias, A.E., Skvir, N.J., Criscione, S. W., Caligiana, A., Brocculi, G., Adney, E.M., Boeke, J.D., et al. (2019). L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debacq-Chainiaux, F., Erusalimsky, J.D., Campisi, J., and Toussaint, O. (2009). Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4, 1798–1806.

    Article  CAS  PubMed  Google Scholar 

  • Doherty, T.J. (2003). Invited review: Aging and sarcopenia. J Appl Physiol 95, 1717–1727.

    Article  CAS  PubMed  Google Scholar 

  • Dong, J., Wang, X., Cao, C., Wen, Y., Sakashita, A., Chen, S., Zhang, J., Zhang, Y., Zhou, L., Luo, M., et al. (2019). UHRF1 suppresses retrotransposons and cooperates with PRMT5 and PIWI proteins in male germ cells. Nat Commun 10, 4705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong, X., Milholland, B., and Vijg, J. (2016). Evidence for a limit to human lifespan. Nature 538, 257–259.

    Article  CAS  PubMed  Google Scholar 

  • Dou, Z., Ghosh, K., Vizioli, M.G., Zhu, J., Sen, P., Wangensteen, K.J., Simithy, J., Lan, Y., Lin, Y., Zhou, Z., et al. (2017). Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggert, T., Wolter, K., Ji, J., Ma, C., Yevsa, T., Klotz, S., Medina-Echeverz, J., Longerich, T., Forgues, M., Reisinger, F., et al. (2016). Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30, 533–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elzi, D.J., Lai, Y., Song, M., Hakala, K., Weintraub, S.T., and Shiio, Y. (2012). Plasminogen activator inhibitor 1 - insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence. Proc Natl Acad Sci USA 109, 12052–12057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann-Stroissnigg, H., Ling, Y.Y., Zhao, J., McGowan, S.J., Zhu, Y., Brooks, R.W., Grassi, D., Gregg, S.Q., Stripay, J.L., Dorronsoro, A., et al. (2017). Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8, 422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fyhrquist, F., Saijonmaa, O., and Strandberg, T. (2013). The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 10, 274–283.

    Article  CAS  PubMed  Google Scholar 

  • García-Prat, L., Martínez-Vicente, M., Perdiguero, E., Ortet, L., Rodríguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A.L., et al. (2016). Autophagy maintains stemness by preventing senescence. Nature 529, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Glück, S., Guey, B., Gulen, M.F., Wolter, K., Kang, T.W., Schmacke, N.A., Bridgeman, A., Rehwinkel, J., Zender, L., and Ablasser, A. (2017). Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19, 1061–1070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorgoulis, V.G., and Halazonetis, T.D. (2010). Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 22, 816–827.

    Article  CAS  PubMed  Google Scholar 

  • Harley, C.B., Futcher, A.B., and Greider, C.W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460.

    Article  CAS  PubMed  Google Scholar 

  • Hassona, Y., Cirillo, N., Heesom, K., Parkinson, E.K., and Prime, S.S. (2014). Senescent cancer-associated fibroblasts secrete active MMP-2 that promotes keratinocyte dis-cohesion and invasion. Br J Cancer 111, 1230–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37, 614–636.

    Article  CAS  PubMed  Google Scholar 

  • Herbig, U., Ferreira, M., Condel, L., Carey, D., and Sedivy, J.M. (2006). Cellular senescence in aging primates. Science 311, 1257.

    Article  CAS  PubMed  Google Scholar 

  • Hickson, L.T.J., Langhi Prata, L.G.P., Bobart, S.A., Evans, T.K., Giorgadze, N., Hashmi, S.K., Herrmann, S.M., Jensen, M.D., Jia, Q., Jordan, K.L., et al. (2019). Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornsby, P.J. (2002). Cellular senescence and tissue aging in vivo. J Gerontol A Biol Sci Med Sci 57, B251–B256.

    Article  PubMed  Google Scholar 

  • Itahana, K., Campisi, J., and Dimri, G.P. (2007). Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol 371, 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, P., Du, W., Mancuso, A., Wellen, K.E., and Yang, X. (2013). Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493, 689–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun, J.I., and Lau, L.F. (2010). The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12, 676–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, H.J., Byun, H.O., Jee, B.A., Min, S., Jeoun, U.W., Lee, Y.K., Seo, Y., Woo, H.G., and Yoon, G. (2017). The ubiquitin-like with PHD and ring finger domains 1 (UHRF1)/DNA methyltransferase 1 (DNMT1) axis is a primary regulator of cell senescence. J Biol Chem 292, 3729–3739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justice, J.N., Nambiar, A.M., Tchkonia, T., LeBrasseur, N.K., Pascual, R., Hashmi, S.K., Prata, L., Masternak, M.M., Kritchevsky, S.B., Musi, N., et al. (2019). Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein, M., Rabinovitch, P.S., and Martin, G.M. (2015). Healthy aging: The ultimate preventative medicine. Science 350, 1191–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, C., Xu, Q., Martin, T.D., Li, M.Z., Demaria, M., Aron, L., Lu, T., Yankner, B.A., Campisi, J., and Elledge, S.J. (2015). The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang, T.W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., Hohmeyer, A., Gereke, M., Rudalska, R., Potapova, A., et al. (2011). Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551.

    Article  CAS  PubMed  Google Scholar 

  • Kaplon, J., Zheng, L., Meissl, K., Chaneton, B., Selivanov, V.A., Mackay, G., van der Burg, S.H., Verdegaal, E.M.E., Cascante, M., Shlomi, T., et al. (2013). A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.H., Choi, Y.W., Lee, J., Soh, E.Y., Kim, J.H., and Park, T.J. (2017). Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun 8, 15208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kortlever, R.M., Higgins, P.J., and Bernards, R. (2006). Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8, 877–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy, J., Torrice, C., Ramsey, M.R., Kovalev, G.I., Al-Regaiey, K., Su, L., and Sharpless, N.E. (2004). Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114, 1299–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizhanovsky, V., Yon, M., Dickins, R.A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., and Lowe, S.W. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuilman, T., Michaloglou, C., Vredeveld, L.C.W., Douma, S., van Doorn, R., Desmet, C.J., Aarden, L.A., Mooi, W.J., and Peeper, D.S. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J.Y., Souroullas, G.P., Diekman, B.O., Krishnamurthy, J., Hall, B.M., Sorrentino, J.A., Parker, J.S., Sessions, G.A., Gudkov, A.V., and Sharpless, N.E. (2019). Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence. Proc Natl Acad Sci USA 116, 2603–2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194–1217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz-Espín, D., Cañamero, M., Maraver, A., Gómez-López, G., Contreras, J., Murillo-Cuesta, S., Rodríguez-Baeza, A., Varela-Nieto, I., Ruberte, J., Collado, M., et al. (2013). Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118.

    Article  PubMed  CAS  Google Scholar 

  • Myrianthopoulos, V., Cartron, P.F., Liutkevičiūtė, Z., Klimašauskas, S., Matulis, D., Bronner, C., Martinet, N., and Mikros, E. (2016). Tandem virtual screening targeting the SRA domain of UHRF1 identifies a novel chemical tool modulating DNA methylation. Eur J Med Chem 114, 390–396.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, A.J., Chiang, Y.J., Hathcock, K.S., Horikawa, I., Sedelnikova, O.A., Hodes, R.J., and Bonner, W.M. (2008). Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenet Chromatin 1, 6.

    Article  CAS  Google Scholar 

  • Narita, M., Nuñez, S., Heard, E., Narita, M., Lin, A.W., Hearn, S.A., Spector, D.L., Hannon, G.J., and Lowe, S.W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Narita, M., Young, A.R.J., Arakawa, S., Samarajiwa, S.A., Nakashima, T., Yoshida, S., Hong, S., Berry, L.S., Reichelt, S., Ferreira, M., et al. (2011). Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332, 966–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niccoli, T., and Partridge, L. (2012). Ageing as a risk factor for disease. Curr Biol 22, R741–R752.

    Google Scholar 

  • Ortiz-Montero, P., Londoño-Vallejo, A., and Vernot, J.P. (2017). Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun Signal 15, 17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prieur, A., and Peeper, D.S. (2008). Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol 20, 150–155.

    Article  CAS  PubMed  Google Scholar 

  • Radiloff, D.R., Wakeman, T.P., Feng, J., Schilling, S., Seto, E., and Wang, X.F. (2011). Trefoil factor 1 acts to suppress senescence induced by oncogene activation during the cellular transformation process. Proc Natl Acad Sci USA 108, 6591–6596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ressler, S., Bartkova, J., Niederegger, H., Bartek, J., Scharffetter-Kochanek, K., Jansen-Dürr, P., and Wlaschek, M. (2006). p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5, 379–389.

    Article  CAS  PubMed  Google Scholar 

  • Schafer, M.J., White, T.A., Iijima, K., Haak, A.J., Ligresti, G., Atkinson, E. J., Oberg, A.L., Birch, J., Salmonowicz, H., Zhu, Y., et al. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8, 14532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless, N.E., and Sherr, C.J. (2015). Forging a signature of in vivo senescence. Nat Rev Cancer 15, 397–408.

    Article  CAS  PubMed  Google Scholar 

  • Sherr, C.J., Beach, D., and Shapiro, G.I. (2016). Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov 6, 353–367.

    Article  CAS  PubMed  Google Scholar 

  • Sousa-Victor, P., Gutarra, S., García-Prat, L., Rodriguez-Ubreva, J., Ortet, L., Ruiz-Bonilla, V., Jardí, M., Ballestar, E., González, S., Serrano, A. L., et al. (2014). Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M.C., Di Giacomo, V., Yosef, R., Pilpel, N., Krizhanovsky, V., Sharpe, J., et al. (2013). Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130.

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan, S., Karakas, C., Doostan, I., Chen, X., Bui, T., Yi, M., Raghavendra, A.S., Zhao, Y., Bashour, S.I., Ibrahim, N.K., et al. (2017). CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin E negative cancers. Nat Commun 8, 15916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Jurk, D., Maddick, M., Nelson, G., Martin-Ruiz, C., and von Zglinicki, T. (2009). DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8, 311–323.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Vegna, S., Jin, H., Benedict, B., Lieftink, C., Ramirez, C., de Oliveira, R.L., Morris, B., Gadiot, J., Wang, W., et al. (2019a). Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Liu, J., Ma, X., Cui, C., Deenik, P.R., Henderson, P.K.P., Sigler, A.L., and Cui, L. (2019b). Real-time imaging of senescence in tumors with DNA damage. Sci Rep 9, 2102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiley, C.D., Velarde, M.C., Lecot, P., Liu, S., Sarnoski, E.A., Freund, A., Shirakawa, K., Lim, H.W., Davis, S.S., Ramanathan, A., et al. (2016). Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23, 303–314.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, H., Yuan, L., Gao, X., Alexander, P.B., Lopez, O., Lau, C., Ding, Y., Chong, M., Sun, T., Chen, R., et al. (2017). UHRF1 is required for basal stem cell proliferation in response to airway injury. Cell Discov 3, 17019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., and Lowe, S.W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, H., Wang, H., Ren, J., Chen, Q., and Chen, Z.J. (2017). cGAS is essential for cellular senescence. Proc Natl Acad Sci USA 114, E4612–E4620.

    Google Scholar 

  • Yuan, L., Zhai, L., Qian, L., Huang, D., Ding, Y., Xiang, H., Liu, X., Thompson, J.W., Liu, J., He, Y.H., et al. (2018). Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Res 28, 625–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A.C., Ding, H., Giorgadze, N., Palmer, A.K., Ikeno, Y., Hubbard, G.B., Lenburg, M., et al. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work was not cited due to space limitations or our oversight. We thank the current and past members of the Wang laboratory whose studies contributed to the development of concepts presented in this review. This work was supported by the National Institute of Health (R01-CA233205 to X.F.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fan Wang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Alexander, P.B. & Wang, XF. Cellular senescence: from anti-cancer weapon to anti-aging target. Sci. China Life Sci. 63, 332–342 (2020). https://doi.org/10.1007/s11427-019-1629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1629-6

Keywords

Navigation