Skip to main content
Log in

Recruitment and reinforcement: maintaining epigenetic silencing

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant “epigenetic” system to achieve this functionality. “Epigenetics” is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, ncRNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state, with an emphasis on recent progress in the field. We emphasize that (i) epigenetic information is inherited in a relatively stable but imprecise fashion; (ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and (iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms. These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alabert, C., Barth, T.K., Reverón-Gómez, N., Sidoli, S., Schmidt, A., Jensen, O.N., Imhof, A., and Groth, A. (2015). Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29, 585–590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida, M., Pintacuda, G., Masui, O., Koseki, Y., Gdula, M., Cerase, A., Brown, D., Mould, A., Innocent, C., Nakayama, M., et al. (2017). PCGF3/ 5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356, 1081–1084.

    Article  PubMed  CAS  Google Scholar 

  • Almouzni, G., and Cedar, H. (2016). Maintenance of epigenetic information. Cold Spring Harb Perspect Biol 8, a019372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aravin, A.A., Hannon, G.J., and Brennecke, J. (2007). The piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761–764.

    Article  PubMed  CAS  Google Scholar 

  • Audergon, P.N., Catania, S., Kagansky, A., Tong, P., Shukla, M., Pidoux, A. L., and Allshire, R.C. (2015). Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science 348, 132–135.

    PubMed  CAS  Google Scholar 

  • Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124.

    Article  PubMed  CAS  Google Scholar 

  • Bashtrykov, P., Jankevicius, G., Smarandache, A., Jurkowska, R.Z., Ragozin, S., and Jeltsch, A. (2012). Specificity of Dnmt1 for methylation of hemimethylated CpG sites resides in its catalytic domain. Chem Biol 19, 572–578.

    Article  PubMed  CAS  Google Scholar 

  • Bintu, L., Yong, J., Antebi, Y.E., McCue, K., Kazuki, Y., Uno, N., Oshimura, M., and Elowitz, M.B. (2016). Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brockdorff, N. (2017). Polycomb complexes in X chromosome inactivation. Phil Trans R Soc B 372, 20170021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown, S.W. (1966). Heterochromatin. Science 151, 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Busturia, A., Wightman, C.D., and Sakonju, S. (1997). A silencer is required for maintenance of transcriptional repression throughout Drosophila development. Development 124, 4343–4350.

    PubMed  CAS  Google Scholar 

  • Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 Lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  • Castel, S.E., and Martienssen, R.A. (2013). RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14, 100–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan, C.S., Rastelli, L., and Pirrotta, V. (1994). A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J 13, 2553–2564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, T., Ueda, Y., Dodge, J.E., Wang, Z., and Li, E. (2003). Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 23, 5594–5605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, J., and Xue, Y. (2016). Emerging roles of non-coding RNAs in epigenetic regulation. Sci China Life Sci 59, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Chestier, A., and Yaniv, M. (1979). Rapid turnover of acetyl groups in the four core histones of simian virus 40 minichromosomes. Proc Natl Acad Sci USA 76, 46–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christen, B., and Bienz, M. (1994). Imaginal disc silencers from Ultrabithorax: evidence for Polycomb response elements. Mech Dev 48, 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, R.T., and Struhl, G. (2017). Causal role for inheritance of H3-K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 356, eaai8236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper, S., Grijzenhout, A., Underwood, E., Ancelin, K., Zhang, T., Nesterova, T.B., Anil-Kirmizitas, B., Bassett, A., Kooistra, S.M., Agger, K., et al. (2016). Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun 7, 13661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002). Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111, 185–196.

    Article  PubMed  CAS  Google Scholar 

  • da Rocha, S.T., Boeva, V., Escamilla-Del-Arenal, M., Ancelin, K., Granier, C., Matias, N.R., Sanulli, S., Chow, J., Schulz, E., Picard, C., et al. (2014). Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol Cell 53, 301–316.

    Article  PubMed  CAS  Google Scholar 

  • Davidovich, C., Wang, X., Cifuentes-Rojas, C., Goodrich, K.J., Gooding, A.R., Lee, J.T., and Cech, T.R. (2015). Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol Cell 57, 552–558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davidovich, C., Zheng, L., Goodrich, K.J., and Cech, T.R. (2013). Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol 20, 1250–1257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Djupedal, I., and Ekwall, K. (2009). Epigenetics: heterochromatin meets RNAi. Cell Res 19, 282–295.

    Article  PubMed  CAS  Google Scholar 

  • Elgin, S.C. (1996). Heterochromatin and gene regulation in Drosophila. Curr Opin Genet Dev 6, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., Deplus, R., Fuks, F., Shinkai, Y., Cedar, H., et al. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 15, 1176–1183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filion, G.J., and van Steensel, B. (2010). Reassessing the abundance of H3K9me2 chromatin domains in embryonic stem cells. Nat Genet 42, 4–4. (b)author reply 5-6.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, K.H., Bracken, A.P., Pasini, D., Dietrich, N., Gehani, S.S., Monrad, A., Rappsilber, J., Lerdrup, M., and Helin, K. (2008). A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10, 1291–1300.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, K., and Helin, K. (2009). Epigenetic inheritance through selfrecruitment of the polycomb repressive complex 2. Epigenetics 4, 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff, S., and Shilatifard, A. (2011). Histone modification: cause or cog? Trends Genet 27, 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Holoch, D., and Moazed, D. (2015). RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16, 71–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Honda, S., and Selker, E.U. (2008). Direct interaction between DNA methyltransferase DIM-2 and HP1 Is required for DNA methylation in Neurospora crassa. Mol Cell Biol 28, 6044–6055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, C., Xu, M., and Zhu, B. (2013). Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional states without the precise restoration of marks? Philos Trans R Soc London B, Biol Sci 368, 20110332.

    Article  CAS  Google Scholar 

  • Jackson, V., Shires, A., Chalkley, R., and Granner, D.K. (1975). Studies on highly metabolically active acetylation and phosphorylation of histones. J Biol Chem 250, 4856–4863.

    PubMed  CAS  Google Scholar 

  • Jih, G., Iglesias, N., Currie, M.A., Bhanu, N.V., Paulo, J.A., Gygi, S.P., Garcia, B.A., and Moazed, D. (2017). Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription. Nature 547, 463–467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson, W.L., Yewdell, W.T., Bell, J.C., McNulty, S.M., Duda, Z., O’Neill, R.J., Sullivan, B.A., and Straight, A.F. (2017). RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. eLife 6, e25299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Justin, N., Zhang, Y., Tarricone, C., Martin, S.R., Chen, S., Underwood, E., De Marco, V., Haire, L.F., Walker, P.A., Reinberg, D., et al. (2016). Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nat Commun 7, 11316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalb, R., Latwiel, S., Baymaz, H.I., Jansen, P.W., Muller, C.W., Vermeulen, M., and Muller, J. (2014). Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 21, 569–571.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, S., Son, J., Shen, S.S., Reinberg, D., and Bonasio, R. (2013). PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat Struct Mol Biol 20, 1258–1264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlic, R., Chung, H.R., Lasserre, J., Vlahovicek, K., and Vingron, M. (2010). Histone modification levels are predictive for gene expression. Proc Natl Acad Sci USA 107, 2926–2931.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohlmaier, A., Savarese, F., Lachner, M., Martens, J., Jenuwein, T., and Wutz, A. (2004). A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2, e171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowluru, R.A., and Mishra, M. (2015). Contribution of epigenetics in diabetic retinopathy. Sci China Life Sci 58, 556–563.

    Article  PubMed  CAS  Google Scholar 

  • Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., and Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120.

    Article  PubMed  CAS  Google Scholar 

  • Laprell, F., Finkl, K., and Müller, J. (2017). Propagation of Polycombrepressed chromatin requires sequence-specific recruitment to DNA. Science 356, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Law, J.A., and Jacobsen, S.E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11, 204–220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehnertz, B., Ueda, Y., Derijck, A.A.H.A., Braunschweig, U., Perez-Burgos, L., Kubicek, S., Chen, T., Li, E., Jenuwein, T., and Peters, A.H.F. M. (2003). Suv39h-mediated histone H3 Lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13, 1192–1200.

    Article  PubMed  CAS  Google Scholar 

  • Li, G., and Reinberg, D. (2011). Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21, 175–186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang, G., Chan, M.F., Tomigahara, Y., Tsai, Y.C., Gonzales, F.A., Li, E., Laird, P.W., and Jones, P.A. (2002). Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22, 480–491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lienert, F., Mohn, F., Tiwari, V.K., Baubec, T., Roloff, T.C., Gaidatzis, D., Stadler, M.B., and Schübeler, D. (2011). Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet 7, e1002090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, N., Zhang, Z., Wu, H., Jiang, Y., Meng, L., Xiong, J., Zhao, Z., Zhou, X., Li, J., Li, H., et al. (2015). Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev 29, 379–393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Maenner, S., Blaud, M., Fouillen, L., Savoye, A., Marchand, V., Dubois, A., Sanglier-Cianférani, S., Van Dorsselaer, A., Clerc, P., Avner, P., et al. (2010). 2-D structure of the a region of Xist RNA and its implication for PRC2 association. PLoS Biol 8, e1000276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mak, W., Baxter, J., Silva, J., Newall, A.E., Otte, A.P., and Brockdorff, N. (2002). Mitotically stable association of polycomb group proteins Eed and Enx1 with the inactive X chromosome in trophoblast stem cells. Curr Biol 12, 1016–1020.

    Article  PubMed  CAS  Google Scholar 

  • Margueron, R., Justin, N., Ohno, K., Sharpe, M.L., Son, J., Drury III, W.J., Voigt, P., Martin, S.R., Taylor, W.R., de Marco, V., et al. (2009). Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martienssen, R., and Moazed, D. (2015). RNAi and heterochromatin assembly. Cold Spring Harb Perspect Biol 7, a019323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller, J., Hart, C.M., Francis, N.J., Vargas, M.L., Sengupta, A., Wild, B., Miller, E.L., O’Connor, M.B., Kingston, R.E., and Simon, J.A. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208.

    Article  PubMed  Google Scholar 

  • Müller, J., and Kassis, J.A. (2006). Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr Opin Genet Dev 16, 476–484.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, N., Otsuka, S., Myung, J., and Takumi, T. (2015). Autism spectrum disorder model mice: focus on copy number variation and epigenetics. Sci China Life Sci 58, 976–984.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., and Grewal, S.I.S. (2001). Role of histone H3 Lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, I., Otte, A.P., Allis, C.D., Reinberg, D., and Heard, E. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649.

    Article  PubMed  CAS  Google Scholar 

  • Onodera, Y., Haag, J.R., Ream, T., Costa Nunes, P., Pontes, O., and Pikaard, C.S. (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, R.R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J., Nagano, T., Mancini-Dinardo, D., and Kanduri, C. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32, 232–246.

    Article  PubMed  CAS  Google Scholar 

  • Pengelly, A.R., Copur, Ö., Jäckle, H., Herzig, A., and Müller, J. (2013). A histone mutant reproduces the phenotype caused by loss of histonemodifying factor Polycomb. Science 339, 698–699.

    Article  PubMed  CAS  Google Scholar 

  • Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S., and Brockdorff, N. (1996). Requirement for Xist in X chromosome inactivation. Nature 379, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Pintacuda, G., Wei, G., Roustan, C., Kirmizitas, B.A., Solcan, N., Cerase, A., Castello, A., Mohammed, S., Moindrot, B., Nesterova, T.B., et al. (2017). hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish Polycomb-mediated chromosomal silencing. Mol Cell 68, 955–969.e10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plath, K., Mlynarczyk-Evans, S., Nusinow, D.A., and Panning, B. (2002). Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36, 233–278.

    Article  PubMed  CAS  Google Scholar 

  • Plath, K., Fang, J., Mlynarczyk-Evans, S.K., Cao, R., Worringer, K.A., Wang, H., de la Cruz, C.C., Otte, A.P., Panning, B., and Zhang, Y. (2003). Role of histone H3 Lysine 27 methylation in X inactivation. Science 300, 131–135.

    Article  PubMed  CAS  Google Scholar 

  • Probst, A.V., Dunleavy, E., and Almouzni, G. (2009). Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10, 192–206.

    Article  PubMed  CAS  Google Scholar 

  • Ragunathan, K., Jih, G., and Moazed, D. (2015). Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699.

    PubMed  Google Scholar 

  • Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599.

    Article  PubMed  CAS  Google Scholar 

  • Richards, E.J., and Elgin, S.C.R. (2002). Epigenetic codes for heterochromatin formation and silencing. Cell 108, 489–500.

    Article  PubMed  CAS  Google Scholar 

  • Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S. A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rountree, M.R., and Selker, E.U. (2010). DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity 105, 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Sadaie, M., Iida, T., Urano, T., and Nakayama, J.I. (2004). A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J 23, 3825–3835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saksouk, N., Barth, T.K., Ziegler-Birling, C., Olova, N., Nowak, A., Rey, E., Mateos-Langerak, J., Urbach, S., Reik, W., Torres-Padilla, M.E., et al. (2014). Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol Cell 56, 580–594.

    Article  PubMed  CAS  Google Scholar 

  • Schalch, T., Job, G., Noffsinger, V.J., Shanker, S., Kuscu, C., Joshua-Tor, L., and Partridge, J.F. (2009). High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol Cell 34, 36–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scharf, A.N.D., Barth, T.K., and Imhof, A. (2009). Establishment of histone modifications after chromatin assembly. Nucleic Acids Res 37, 5032–5040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schotta, G., Ebert, A., Krauss, V., Fischer, A., Hoffmann, J., Rea, S., Jenuwein, T., Dorn, R., and Reuter, G. (2002). Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21, 1121–1131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuettengruber, B., Bourbon, H.M., Di Croce, L., and Cavalli, G. (2017). Genome regulation by Polycomb and trithorax: 70 years and counting. Cell 171, 34–57.

    Article  PubMed  CAS  Google Scholar 

  • Sengupta, A.K., Kuhrs, A., and Müller, J. (2004). General transcriptional silencing by a Polycomb response element in Drosophila. Development 131, 1959–1965.

    Article  PubMed  CAS  Google Scholar 

  • Shipony, Z., Mukamel, Z., Cohen, N.M., Landan, G., Chomsky, E., Zeliger, S.R., Fried, Y.C., Ainbinder, E., Friedman, N., and Tanay, A. (2014). Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature 513, 115–119.

    Article  PubMed  CAS  Google Scholar 

  • Shirai, A., Kawaguchi, T., Shimojo, H., Muramatsu, D., Ishida-Yonetani, M., Nishimura, Y., Kimura, H., Nakayama, J.I., and Shinkai, Y. (2017). Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. eLife 6, e25317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva, J., Mak, W., Zvetkova, I., Appanah, R., Nesterova, T.B., Webster, Z., Peters, A.H.F.M., Jenuwein, T., Otte, A.P., and Brockdorff, N. (2003). Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 Polycomb group complexes. Dev Cell 4, 481–495.

    Article  PubMed  CAS  Google Scholar 

  • Simon, J., Chiang, A., Bender, W., Shimell, M.J., and O’Connor, M. (1993). Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev Biol 158, 131–144.

    Article  PubMed  CAS  Google Scholar 

  • Song, J., Rechkoblit, O., Bestor, T.H., and Patel, D.J. (2011). Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331, 1036–1040.

    Article  PubMed  CAS  Google Scholar 

  • Song, J., Teplova, M., Ishibe-Murakami, S., and Patel, D.J. (2012). Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335, 709–712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stancheva, I. (2005). Caught in conspiracy: cooperation between DNA methylation and histone H3K9 methylation in the establishment and maintenance of heterochromatin. Biochem Cell Biol 83, 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Steffen, P.A., and Ringrose, L. (2014). What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 15, 340–356.

    Article  PubMed  CAS  Google Scholar 

  • Takeshita, K., Suetake, I., Yamashita, E., Suga, M., Narita, H., Nakagawa, A., and Tajima, S. (2011). Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1). Proc Natl Acad Sci USA 108, 9055–9059.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamaru, H., and Selker, E.U. (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Trojer, P., and Reinberg, D. (2007). Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Velazquez Camacho, O., Galan, C., Swist-Rosowska, K., Ching, R., Gamalinda, M., Karabiber, F., De La Rosa-Velazquez, I., Engist, B., Koschorz, B., Shukeir, N., et al. (2017). Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 6, e25293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S.I.S., and Moazed, D. (2004). RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, C.Z., and Zhu, B. (2015). You are never alone: crosstalk among epigenetic players. Sci Bull 60, 899–904.

    Article  CAS  Google Scholar 

  • Wang, X., Goodrich, K.J., Gooding, A.R., Naeem, H., Archer, S., Paucek, R.D., Youmans, D.T., Cech, T.R., and Davidovich, C. (2017). Targeting of Polycomb repressive complex 2 to RNA by short repeats of consecutive guanines. Mol Cell 65, 1056–1067.e5.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., and Moazed, D. (2017). DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation. Science 356, 88–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wassenegger, M. (2005). The role of the RNAi machinery in heterochromatin formation. Cell 122, 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Wen, B., Wu, H., Shinkai, Y., Irizarry, R.A., and Feinberg, A.P. (2009). Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41, 246–250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wutz, A., Rasmussen, T.P., and Jaenisch, R. (2002). Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30, 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Xu, M., Long, C., Chen, X., Huang, C., Chen, S., and Zhu, B. (2010). Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Xu, M., Wang, W., Chen, S., and Zhu, B. (2011). A model for mitotic inheritance of histone lysine methylation. EMBO Rep 13, 60–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaidi, S.K., Young, D.W., Montecino, M., van Wijnen, A.J., Stein, J.L., Lian, J.B., and Stein, G.S. (2011). Bookmarking the genome: maintenance of epigenetic information. J Biol Chem 286, 18355–18361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zee, B.M., Levin, R.S., Xu, B., LeRoy, G., Wingreen, N.S., and Garcia, B. A. (2010). In vivo residue-specific histone methylation dynamics. J Biol Chem 285, 3341–3350.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J., and Lee, J.T. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, B., and Reinberg, D. (2011). Epigenetic inheritance: uncontested? Cell Res 21, 435–441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zocco, M., Marasovic, M., Pisacane, P., Bilokapic, S., and Halic, M. (2016). The Chp1 chromodomain binds the H3K9me tail and the nucleosome core to assemble heterochromatin. Cell Discov 2, 16004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31761163001, 31701128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhu, B. & Xiong, J. Recruitment and reinforcement: maintaining epigenetic silencing. Sci. China Life Sci. 61, 515–522 (2018). https://doi.org/10.1007/s11427-018-9276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9276-7

Keywords

Navigation