Skip to main content
Log in

Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Tumor microenvironment (TME) comprising cellular and non-cellular components is a major source of cancer hallmarks. Notably, angiogenesis responsible for normal physiological remodeling process can otherwise harness vessel abnormalities during tumorigenesis eliciting severe therapeutic inefficiency. Currently, FDA approved antiangiogenic drugs have only shown modest clinical success owing to tumor hypoxia, antiangiogenic therapeutic resistance, and limited knowledge in understanding TME. In order to overcome these limitations, targeting angiogenesis combined with immunosuppressive TME could offer potential therapeutic opportunities. Indeed, these therapeutic approaches can be further revisited with the advent of nanotechnology that can target the key cellular components of TME and tumor cells more precisely. Synergetic targeting without eliciting systemic toxicity achieved by integration of antiangiogenic and immunotherapy in a single nanoplatform is vital for therapeutic success. In this review, we will discuss the most promising nanotechnological advancements oriented to modulate the immunosuppressive TME in association with antiangiogenic therapy that has gained immense popularity in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattarai, P., and Dai, Z. (2017). Cyanine based nanoprobes for cancer theranostics. Adv Healthcare Mater 6, 1700262.

    Article  Google Scholar 

  • Buckanovich, R.J., Facciabene, A., Kim, S., Benencia, F., Sasaroli, D., Balint, K., Katsaros, D., O’Brien-Jenkins, A., Gimotty, P.A., and Coukos, G. (2008). Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 14, 28–36.

    Article  CAS  PubMed  Google Scholar 

  • Casazza, A., Laoui, D., Wenes, M., Rizzolio, S., Bassani, N., Mambretti, M., Deschoemaeker, S., Van Ginderachter, J.A., Tamagnone, L., and Mazzone, M. (2013). Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709.

    Article  CAS  PubMed  Google Scholar 

  • Casey, S.C., Amedei, A., Aquilano, K., Azmi, A.S., Benencia, F., Bhakta, D., Bilsland, A.E., Boosani, C.S., Chen, S., Ciriolo, M.R., et al. (2015). Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol 35, S199–S223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan, V.P., Stylianopoulos, T., Martin, J.D., Popovic, Z., Chen, O., Kamoun, W.S., Bawendi, M.G., Fukumura, D., and Jain, R.K. (2012). Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotech 7, 383–388.

    Article  CAS  Google Scholar 

  • Chen, B., Dai, W., He, B., Zhang, H., Wang, X., Wang, Y., and Zhang, Q. (2017). Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7, 538–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Huang, Y., Reiberger, T., Duyverman, A.M., Huang, P., Samuel, R., Hiddingh, L., Roberge, S., Koppel, C., Lauwers, G.Y., et al. (2014). Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 59, 1435–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, B., Moon, H., Hong, S.J., Shin, C., Do, Y., Ryu, S., and Kang, S. (2016). Effective delivery of antigen-encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection. ACS Nano 10, 7339–7350.

    Article  CAS  PubMed  Google Scholar 

  • Christian, D.A., and Hunter, C.A. (2012). Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy 4, 425–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corzo, C.A., Condamine, T., Lu, L., Cotter, M.J., Youn, J.I., Cheng, P., Cho, H.I., Celis, E., Quiceno, D.G., Padhya, T., et al. (2010). HIF-1a regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207, 2439–2453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danhier, F. (2016). To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 244, 108–121.

    Article  CAS  PubMed  Google Scholar 

  • De Palma, M., Biziato, D., and Petrova, T.V. (2017). Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17, 457–474.

    Article  PubMed  Google Scholar 

  • De Palma, M., Venneri, M.A., Galli, R., Sergi Sergi, L., Politi, L.S., Sampaolesi, M., and Naldini, L. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226.

    Article  PubMed  Google Scholar 

  • Ding, Y., Liu, J., Lu, S., Igweze, J., Xu, W., Kuang, D., Zealey, C., Liu, D., Gregor, A., Bozorgzad, A., et al. (2016). Self-assembling peptide for codelivery of HIV-1 CD8+ T cells epitope and Toll-like receptor 7/8 agonists R848 to induce maturation of monocyte derived dendritic cell and augment polyfunctional cytotoxic T lymphocyte (CTL) response. J Control Release 236, 22–30.

    Article  CAS  PubMed  Google Scholar 

  • Doedens, A.L., Stockmann, C., Rubinstein, M.P., Liao, D., Zhang, N., DeNardo, D.G., Coussens, L.M., Karin, M., Goldrath, A.W., and Johnson, R.S. (2010). Macrophage expression of hypoxia-inducible factor-1 suppresses T-cell function and promotes tumor progression. Cancer Res 70, 7465–7475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebos, J.M.L., and Kerbel, R.S. (2011). Antiangiogenic therapy: impact on invasion, disease progression and metastasis. Nat Rev Clin Oncol 8, 210–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facciabene, A., Motz, G.T., and Coukos, G. (2012). T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72, 2162–2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facciabene, A., Peng, X., Hagemann, I.S., Balint, K., Barchetti, A., Wang, L.P., Gimotty, P.A., Gilks, C.B., Lal, P., Zhang, L., et al. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230.

    Article  CAS  PubMed  Google Scholar 

  • Fathallah-Shaykh, H.M., Zhao, L.J., Kafrouni, A.I., Smith, G.M., and Forman, J. (2000). Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis. J Immunol 164, 217–222.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, N., and Adamis, A.P. (2016). Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov 15, 385–403.

    Article  CAS  PubMed  Google Scholar 

  • Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29, 15–18.

    Article  CAS  PubMed  Google Scholar 

  • Folkman, J. (2007). Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6, 273–286.

    Article  CAS  PubMed  Google Scholar 

  • Franklin, R.A., Liao, W., Sarkar, A., Kim, M.V., Bivona, M.R., Liu, K., Pamer, E.G., and Li, M.O. (2014). The cellular and molecular origin of tumor-associated macrophages. Science 344, 921–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel, S., Duda, D.G., Xu, L., Munn, L.L., Boucher, Y., Fukumura, D., and Jain, R.K. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91, 1071–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  • He, J., Duan, S., Yu, X., Qian, Z., Zhou, S., Zhang, Z., Huang, X., Huang, Y., Su, J., Lai, C., et al. (2016). Folate-modified chitosan nanoparticles containing the IP-10 gene enhance melanoma-specific cytotoxic CD8+ CD28+ T lymphocyte responses. Theranostics 6, 752–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, J.W., Tobin, N.P., Rundqvist, H., Li, T., Lavergne, M., García-Ibáñez, Y., Qin, H., Paulsson, J., Zeitelhofer, M., Adzemovic, M.Z., et al. (2015). Role of tumor pericytes in the recruitment of myeloid-derived suppressor cells. J Natl Cancer Inst 107, djv209.

    Article  PubMed  Google Scholar 

  • Irvine, D.J., Hanson, M.C., Rakhra, K., and Tokatlian, T. (2015). Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 115, 11109–11146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahanban-Esfahlan, R., de la Guardia, M., Ahmadi, D., and Yousefi, B. (2018). Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol 233, 2019–2031.

    Article  CAS  PubMed  Google Scholar 

  • Jain, R.K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62.

    Article  CAS  PubMed  Google Scholar 

  • Jain, R.K. (2014). Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26, 605–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain, S., Tran, T.H., and Amiji, M. (2015). Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 61, 162–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, T., Zhao, Y., Ding, Y., and Nie, G. (2013). Using functional nanomaterials to target and regulate the tumor microenvironment: diagnostic and therapeutic applications. Adv Mater 25, 3508–3525.

    Article  CAS  PubMed  Google Scholar 

  • Kandalaft, L.E., Powell, D.J., Jr., Singh, N., and Coukos, G. (2011). Immunotherapy for ovarian cancer: what’s next? J Clin Oncol 29, 925–933.

    Article  CAS  PubMed  Google Scholar 

  • Kang, T.W., Kim, H.S., Lee, B.C., Shin, T.H., Choi, S.W., Kim, Y.J., Lee, H.Y., Jung, Y.K., Seo, K.W., and Kang, K.S. (2015). Mica nanoparticle, STB-HO eliminates the human breast carcinoma cells by regulating the interaction of tumor with its immune microenvironment. Sci Rep 5, 17515.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khawar, I.A., Kim, J.H., and Kuh, H.J. (2015). Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 201, 78–89.

    Article  CAS  PubMed  Google Scholar 

  • Kujawski, M., Kortylewski, M., Lee, H., Herrmann, A., Kay, H., and Yu, H. (2008). Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118, 3367–3377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong, B., Gai, S.A., Elkhader, J., Wittrup, K.D., and Irvine, D.J. (2013). Localized immunotherapy via liposome-anchored anti-CD137+ IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res 73, 1547–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, C., Yu, X., Zhuo, H., Zhou, N., Xie, Y., He, J., Peng, Y., Xie, X., Luo, G., Zhou, S., et al. (2014). Anti-tumor immune response of folateconjugated chitosan nanoparticles containing the IP-10 gene in mice with hepatocellular carcinoma. J Biomed Nanotechnol 10, 3576–3589.

    Article  CAS  PubMed  Google Scholar 

  • Lanitis, E., Irving, M., and Coukos, G. (2015). Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol 33, 55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y.H., Martin-Orozco, N., Zheng, P., Li, J., Zhang, P., Tan, H., Park, H. J., Jeong, M., Chang, S.H., Kim, B.S., et al. (2017). Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res 27, 1034–1045.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Zhao, X., Du, B., Li, X., Liu, S., Yang, X.Y., Ding, H., Yang, W., Pan, F., Wu, X., et al. (2016). Gold nanoparticle-mediated targeted delivery of recombinant human endostatin normalizes tumour vasculature and improves cancer therapy. Sci Rep 6, 30619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, A.Y., Mattos Almeida, J.P., Bear, A., Liu, N., Luo, L., Foster, A.E., and Drezek, R.A. (2013). Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS ONE 8, e63550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J.Y., Chiang, T., Liu, C.H., Chern, G.G., Lin, T.T., Gao, D.Y., and Chen, Y. (2015). Delivery of siRNA using CXCR4-targeted nanoparticles modulates tumor microenvironment and achieves a potent antitumor response in liver cancer. Mol Ther 23, 1772–1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Ma, X., Jin, S., Xue, X., Zhang, C., Wei, T., Guo, W., and Liang, X. J. (2016a). Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance. Mol Pharm 13, 1723–1730.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Zhang, H., Wu, X., Guo, L., Wang, F., Xia, G., Chen, B., Yin, H.X., Wang, Y., and Li, X. (2016b). Tf-PEG-PLL-PLGA nanoparticles enhanced chemosensitivity for hypoxia-responsive tumor cells. Onco Tar-gets Ther Volume 9, 5049–5059.

    Article  CAS  Google Scholar 

  • Margaroni, M., Agallou, M., Kontonikola, K., Karidi, K., Kammona, O., Kiparissides, C., Gaitanaki, C., and Karagouni, E. (2016). PLGA nanoparticles modified with a TNFα mimicking peptide, soluble Leishmania antigens and MPLA induce T cell priming in vitro via dendritic cell functional differentiation. Eur J Pharm BioPharm 105, 18–31.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, P.C., Chafe, S.C., and Dedhar, S. (2016). Overcoming hypoxiamediated tumor progression: combinatorial approaches targeting pH regulation, angiogenesis and immune dysfunction. Front Cell Dev Biol in press doi: 10.3389/fcell.2016.00027.

    Google Scholar 

  • McIntyre, A., and Harris, A.L. (2015). Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol Med 7, 368–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molon, B., Ugel, S., Del Pozzo, F., Soldani, C., Zilio, S., Avella, D., De Palma, A., Mauri, P.L., Monegal, A., Rescigno, M., et al. (2011). Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208, 1949–1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motz, G.T., and Coukos, G. (2011). The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11, 702–711.

    Article  CAS  PubMed  Google Scholar 

  • Murata, N., Takashima, Y., Toyoshima, K., Yamamoto, M., and Okada, H. (2008). Anti-tumor effects of anti-VEGF siRNA encapsulated with PLGA microspheres in mice. J Control Release 126, 246–254.

    Article  CAS  PubMed  Google Scholar 

  • Murdoch, C., Giannoudis, A., and Lewis, C.E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–2234.

    Article  CAS  PubMed  Google Scholar 

  • Murdoch, C., Muthana, M., Coffelt, S.B., and Lewis, C.E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8, 618–631.

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa, H., Uto, Y., Kirk, K.L., and Hori, H. (2006). Design of hypoxiatargeting drugs as new cancer chemotherapeutics. Biol Pharmaceut Bull 29, 2335–2342.

    Article  CAS  Google Scholar 

  • Niu, M., Valdes, S., Naguib, Y.W., Hursting, S.D., and Cui, Z. (2016). Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharm 13, 1833–1842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V., and Chouaib, S. (2014). PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211, 781–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, P.Y., Ma, G., Weber, K.J., Ozao-Choy, J., Wang, G., Yin, B., Divino, C.M., and Chen, S.H. (2010). Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70, 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Prasad, P., Gordijo, C.R., Abbasi, A.Z., Maeda, A., Ip, A., Rauth, A.M., DaCosta, R.S., and Wu, X.Y. (2014). Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8, 3202–3212.

    Article  CAS  PubMed  Google Scholar 

  • Qian, C., Yu, J., Chen, Y., Hu, Q., Xiao, X., Sun, W., Wang, C., Feng, P., Shen, Q.D., and Gu, Z. (2016). Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv Mater 28, 3313–3320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, Y., Qiao, S., Dai, Y., Xu, G., Dai, B., Lu, L., Yu, X., Luo, Q., and Zhang, Z. (2017). Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 11, 9536–9549.

    Article  CAS  PubMed  Google Scholar 

  • Quail, D.F., and Joyce, J.A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riabov, V., Gudima, A., Wang, N., Mickley, A., Orekhov, A., and Kzhyshkowska, J. (2014). Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Samples, J., Willis, M., and Klauber-Demore, N. (2013). Targeting angiogenesis and the tumor microenvironment. Surg Oncol Clinics North Am 22, 629–639.

    Article  Google Scholar 

  • Shrimali, R.K., Yu, Z., Theoret, M.R., Chinnasamy, D., Restifo, N.P., and Rosenberg, S.A. (2010). Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70, 6171–6180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra, J.R., Corso, S., Caione, L., Cepero, V., Conrotto, P., Cignetti, A., Piacibello, W., Kumanogoh, A., Kikutani, H., Comoglio, P.M., et al. (2008). Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. J Exp Med 205, 1673–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, M., Liu, T., Shi, C., Zhang, X., and Chen, X. (2016). Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10, 633–647.

    Article  CAS  PubMed  Google Scholar 

  • Squadrito, M.L., and De Palma, M. (2011). Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Aspects Med 32, 123–145.

    Article  CAS  PubMed  Google Scholar 

  • Swift, M.R., and Weinstein, B.M. (2009). Arterial-venous specification during development. Circul Res 104, 576–588.

    Article  CAS  Google Scholar 

  • Teo, P.Y., Yang, C., Whilding, L.M., Parente-Pereira, A.C., Maher, J., George, A.J.T., Hedrick, J.L., Yang, Y.Y., and Ghaem-Maghami, S. (2015). Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Adv Healthcare Mater 4, 1180–1189.

    Article  CAS  Google Scholar 

  • Thambi, T., Park, J.H., and Lee, D.S. (2016). Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives. Chem Commun 52, 8492–8500.

    Article  CAS  Google Scholar 

  • Turrini, R., Pabois, A., Xenarios, I., Coukos, G., Delaloye, J.F., and Doucey, M.A. (2017). TIE-2 expressing monocytes in human cancers. OncoImmunology 6, e1303585.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Roemeling, C., Jiang, W., Chan, C.K., Weissman, I.L., and Kim, B.Y.S. (2017). Breaking down the barriers to precision cancer nanomedicine. Trends Biotech 35, 159–171.

    Article  Google Scholar 

  • Voron, T., Marcheteau, E., Pernot, S., Colussi, O., Tartour, E., Taieb, J., and Terme, M. (2014). Control of the immune response by pro-angiogenic factors. Front Oncol 4, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Yang, Y., Zhe, H., He, Z., and Zhou, S. (2014). Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Design Dev Ther 8, 2075–2088.

    CAS  Google Scholar 

  • Wei, M., Chen, N., Li, J., Yin, M., Liang, L., He, Y., Song, H., Fan, C., and Huang, Q. (2012). Polyvalent immunostimulatory nanoagents with selfassembled CpG oligonucleotide-conjugated gold nanoparticles. Angew Chem Int Ed 51, 1202–1206.

    Article  CAS  Google Scholar 

  • Weis, S.M., and Cheresh, D.A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17, 1359–1370.

    Article  CAS  PubMed  Google Scholar 

  • Xie, B., Wang, D.H., and Spechler, S.J. (2012). Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Dig Dis Sci 57, 1122–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanganeh, S., Hutter, G., Spitler, R., Lenkov, O., Mahmoudi, M., Shaw, A., Pajarinen, J.S., Nejadnik, H., Goodman, S., Moseley, M., et al. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotech 11, 986–994.

    Article  CAS  Google Scholar 

  • Zhang, B., Jin, K., Jiang, T., Wang, L., Shen, S., Luo, Z., Tuo, Y., Liu, X., Hu, Y., and Pang, Z. (2017a). Celecoxib normalizes the tumor microenvironment and enhances small nanotherapeutics delivery to A549 tumors in nude mice. Sci Rep 7, 10071.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Li, L., Liu, X.L., Jiao, J., Ng, C.T., Yi, J.B., Luo, Y.E., Bay, B. H., Zhao, L.Y., Peng, M.L., et al. (2017b). Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent. ACS Nano 11, 3614–3631.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Yan, L., and Kim, J.A. (2015). Modulating mammary tumor growth, metastasis and immunosuppression by siRNA-induced MIF reduction in tumor microenvironment. Cancer Gene Ther 22, 463–474.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Huo, M., Xu, Z., Wang, Y., and Huang, L. (2015). Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma. Biomaterials 68, 54–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, P., Hu, C., Hui, K., and Jiang, X. (2017). The role and significance of VEGFR2+ regulatory T cells in tumor immunity. Onco Targets Ther 10, 4315–4319.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2016YFA0201400) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81421004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, S., Bhattarai, P. & Dai, Z. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment. Sci. China Life Sci. 61, 380–391 (2018). https://doi.org/10.1007/s11427-017-9256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9256-1

Keywords

Navigation