Skip to main content
Log in

Decoding early myelopoiesis from dynamics of core endogenous network

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

A decade ago mainstream molecular biologists regarded it impossible or biologically ill-motivated to understand the dynamics of complex biological phenomena, such as cancer genesis and progression, from a network perspective. Indeed, there are numerical difficulties even for those who were determined to explore along this direction. Undeterred, seven years ago a group of Chinese scientists started a program aiming to obtain quantitative connections between tumors and network dynamics. Many interesting results have been obtained. In this paper we wish to test such idea from a different angle: the connection between a normal biological process and the network dynamics. We have taken early myelopoiesis as our biological model. A standard roadmap for the cell-fate diversification during hematopoiesis has already been well established experimentally, yet little was known for its underpinning dynamical mechanisms. Compounding this difficulty there were additional experimental challenges, such as the seemingly conflicting hematopoietic roadmaps and the cell-fate inter-conversion events. With early myeloid cell-fate determination in mind, we constructed a core molecular endogenous network from well-documented gene regulation and signal transduction knowledge. Turning the network into a set of dynamical equations, we found computationally several structurally robust states. Those states nicely correspond to known cell phenotypes. We also found the states connecting those stable states. They reveal the developmental routes—how one stable state would most likely turn into another stable state. Such interconnected network among stable states enabled a natural organization of cell-fates into a multi-stable state landscape. Accordingly, both the myeloid cell phenotypes and the standard roadmap were explained mechanistically in a straightforward manner. Furthermore, recent challenging observations were also explained naturally. Moreover, the landscape visually enables a prediction of a pool of additional cell states and developmental routes, including the non-sequential and cross-branch transitions, which are testable by future experiments. In summary, the endogenous network dynamics provide an integrated quantitative framework to understand the heterogeneity and lineage commitment in myeloid progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolfsson, J., Mansson, R., Buza-Vidas, N., Hultquist, A., Liuba, K., Jensen, C.T., Bryder, D., Yang, L., Borge, O.J., Thoren, L.A.M., Anderson, K., Sitnicka, E., Sasaki, Y., Sigvardsson, M., and Jacobsen, S.E.W. (2005). Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential. Cell 121, 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Akashi, K., Traver, D., Miyamoto, T., and Weissman, I.L. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197.

    Article  CAS  PubMed  Google Scholar 

  • Alberts, B., Wilson, J.H., and Hunt, T. (2008). Molecular Biology of the Cell, 5th ed. (New York: Garland Science).

    Google Scholar 

  • Ao, P. (2007). Orders of magnitude change in phenotype rate caused by mutation. Cell Oncol 29, 67–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ao, P. (2009). Global view of bionetwork dynamics: adaptive landscape. J Genets Genomics 36, 63–73.

    Article  Google Scholar 

  • Ao, P., Galas, D., Hood, L., Yin, L., and Zhu, X.M. (2010). Towards predictive stochastic dynamical modeling of cancer genesis and progression. Interdiscip Sci Comput Life Sci 2, 140–144.

    Article  CAS  Google Scholar 

  • Ao, P., Galas, D., Hood, L., and Zhu, X. (2008). Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med Hypotheses 70, 678–684.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, V.I., and Levi, M. (1988). Geometrical methods in the theory of ordinary differential equations, 2nd ed. (New York: Springer-Verlag).

    Book  Google Scholar 

  • Brenner, S. (2010). Sequences and consequences. Philos Trans R Soc B-Biol Sci 365, 207–212.

    Article  Google Scholar 

  • Bryder, D., Rossi, D.J., and Weissman, I.L. (2006). Hematopoietic stem cells. Am J Pathol 169, 338–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch, K., Klapproth, K., Barile, M., Flossdorf, M., Holland-Letz, T., Schlenner, S.M., Reth, M., Höfer, T., and Rodewald, H.R. (2015). Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546.

    Article  CAS  PubMed  Google Scholar 

  • Cahan, P., Li, H., Morris, S.A., Lummertz da Rocha, E., Daley, G.Q., and Collins, J.J. (2014). CellNet: network biology applied to stem cell engineering. Cell 158, 903–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers, S.M., Boles, N.C., Lin, K.Y.K., Tierney, M.P., Bowman, T.V., Bradfute, S.B., Chen, A.J., Merchant, A.A., Sirin, O., Weksberg, D.C., Merchant, M.G., Fisk, C.J., Shaw, C.A., and Goodell, M.A. (2007). Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell 1, 578–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, K.C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B., and Tyson, J.J. (2000). Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11, 369–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enver, T., Pera, M., Peterson, C., and Andrews, P.W. (2009). Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4, 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Folmes, C.D.L., Dzeja, P.P., Nelson, T.J., and Terzic, A. (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass, L., and Kauffman, S.A. (1973). The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 39, 103–129.

    Article  CAS  PubMed  Google Scholar 

  • Graf, T. (2002). Differentiation plasticity of hematopoietic cells. Blood 99, 3089–3101.

    Article  CAS  PubMed  Google Scholar 

  • Graf, T. (2011). Historical origins of transdifferentiation and reprogramming. Cell Stem Cell 9, 504–516.

    Article  CAS  PubMed  Google Scholar 

  • Grass, J.A., Jing, H., Kim, S.I., Martowicz, M.L., Pal, S., Blobel, G.A., and Bresnick, E.H. (2006). Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Mol Cellular Biol 26, 7056–7067.

    Article  CAS  Google Scholar 

  • Haas, S., Hansson, J., Klimmeck, D., Loeffler, D., Velten, L., Uckelmann, H., Wurzer, S., Prendergast, Á.M., Schnell, A., Hexel, K., Santarella-Mellwig, R., Blaszkiewicz, S., Kuck, A., Geiger, H., Milsom, M.D., Steinmetz, L.M., Schroeder, T., Trumpp, A., Krijgsveld, J., and Essers, M.A.G. (2015). Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17, 422–434.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  • Hartwell, L.H., and Kastan, M.B. (1994). Cell cycle control and cancer. Science 266, 1821–1828.

    Article  CAS  PubMed  Google Scholar 

  • Hu, M., Krause, D., Greaves, M., Sharkis, S., Dexter, M., Heyworth, C., and Enver, T. (1997). Multilineage gene expression precedes commitment in the hemopoietic system.. Genes Dev 11, 774–785.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C.Y.F., and Ferrell, J.E. (1996). Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93, 10078–10083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, S., Ernberg, I., and Kauffman, S. (2009). Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Seminars Cell Dev Biol 20, 869–876.

    Article  CAS  Google Scholar 

  • Iwasaki, H., Mizuno, S., Arinobu, Y., Ozawa, H., Mori, Y., Shigematsu, H., Takatsu, K., Tenen, D.G., and Akashi, K. (2006). The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev 20, 3010–3021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, S., Zhang, L., and Hui, L. (2013). Cell fate conversion: Direct induction of hepatocyte-like cells from fibroblasts. J Cell Biochem 114, 256–265.

    Article  CAS  PubMed  Google Scholar 

  • Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D.A., and Kirschner, M.W. (2015). Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimmeck, D., Cabezas-Wallscheid, N., Reyes, A., von Paleske, L., Renders, S., Hansson, J., Krijgsveld, J., Huber, W., and Trumpp, A. (2014). Transcriptome-wide profiling and posttranscriptional analysis of hematopoietic stem/progenitor cell differentiation toward myeloid commitment. Stem Cell Rep 3, 858–875.

    Article  CAS  Google Scholar 

  • Kohli, L., and Passegué, E. (2014). Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol 24, 479–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo, M., Wagers, A.J., Manz, M.G., Prohaska, S.S., Scherer, D.C., Beilhack, G.F., Shizuru, J.A., and Weissman, I.L. (2003). Biology of hematopoietic stem cells and progenitors: Implications for Clinical Application. Annu Rev Immunol 21, 759–806.

    Article  CAS  PubMed  Google Scholar 

  • Kondo, M., Weissman, I.L., and Akashi, K. (1997). Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672.

    Article  CAS  PubMed  Google Scholar 

  • Kueh, H.Y., and Rothenberg, E.V. (2012). Regulatory gene network circuits underlying T cell development from multipotent progenitors. WIREs Syst Biol Med 4, 79–102.

    Article  CAS  Google Scholar 

  • Kulessa, H., Frampton, J., and Graf, T. (1995). GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev 9, 1250–1262.

    Article  CAS  PubMed  Google Scholar 

  • Ladewig, J., Koch, P., and Brustle, O. (2013). Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat Rev Mol Cell Biol 14, 225–236.

    Article  CAS  Google Scholar 

  • Laiosa, C.V., Stadtfeld, M., and Graf, T. (2006). Determinants of lymphoidmyeloid lineage diversification. Annu Rev Immunol 24, 705–738.

    Article  CAS  PubMed  Google Scholar 

  • Laslo, P., Spooner, C.J., Warmflash, A., Lancki, D.W., Lee, H.J., Sciammas, R., Gantner, B.N., Dinner, A.R., and Singh, H. (2006). Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126, 755–766.

    Article  CAS  PubMed  Google Scholar 

  • Lei, J., Levin, S.A., and Nie, Q. (2014). Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation. Proc Natl Acad Sci USA 111, e880–E887.

    Article  Google Scholar 

  • Li, C., Hong, T., and Nie, Q. (2016). Quantifying the landscape and kinetic paths for epithelial–mesenchymal transition from a core circuit. Phys Chem Chem Phys 18, 17949–17956.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Zhu, X., Liu, B., Wang, G., and Ao, P. (2015). Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer. Oncotarget 6, 13607–13627.

    Article  PubMed  PubMed Central  Google Scholar 

  • Massagué, J. (2004). G1 cell-cycle control and cancer. Nature 432, 298–306.

    Article  PubMed  Google Scholar 

  • Naldi, A., Carneiro, J., Chaouiya, C., and Thieffry, D. (2010). Diversity and plasticity of Th cell types predicted from regulatory network modelling. PLoS Comput Biol 6, e1000912.

    Article  Google Scholar 

  • Nerlov, C., and Graf, T. (1998). PU. 1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 12, 2403–2412.

    CAS  PubMed  Google Scholar 

  • Nerlov, C., Querfurth, E., Kulessa, H., and Graf, T. (2000). GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 95, 2543–2551.

    CAS  PubMed  Google Scholar 

  • Notta, F., Zandi, S., Takayama, N., Dobson, S., Gan, O.I., Wilson, G., Kaufmann, K.B., McLeod, J., Laurenti, E., Dunant, C.F., McPherson, J.D., Stein, L.D., Dror, Y., and Dick, J.E. (2016). Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351, aab2116–aab2116.

    Article  PubMed  Google Scholar 

  • Novershtern, N., Subramanian, A., Lawton, L.N., Mak, R.H., Haining, W.N., McConkey, M.E., Habib, N., Yosef, N., Chang, C.Y., Shay, T., Frampton, G.M., Drake, A.C.B., Leskov, I., Nilsson, B., Preffer, F., Dombkowski, D., Evans, J.W., Liefeld, T., Smutko, J.S., Chen, J., Friedman, N., Young, R.A., Golub, T.R., Regev, A., and Ebert, B.L. (2011). Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orkin, S.H., and Zon, L.I. (2008). Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, F., Arkin, Y., Giladi, A., Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Winter, D., Lara-Astiaso, D., Gury, M., Weiner, A., David, E., Cohen, N., Lauridsen, F.K.B., Haas, S., Schlitzer, A., Mildner, A., Ginhoux, F., Jung, S., Trumpp, A., Porse, B.T., Tanay, A., and Amit, I. (2015). Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677.

    Article  CAS  PubMed  Google Scholar 

  • Perié, L., Duffy, K.R., Kok, L., de Boer, R.J., and Schumacher, T.N. (2015). The branching point in erythro-myeloid differentiation. Cell 163, 1655–1662.

    Article  PubMed  Google Scholar 

  • Qian, H. (2013). Stochastic physics, complex systems and biology. Quant Biol 1, 50–53.

    Article  Google Scholar 

  • Qu, Z., Weiss, J.N., and MacLellan, W.R. (2003). Regulation of the mammalian cell cycle: a model of the G1-to-S transition. AJP-Cell Physiol 284, C349–C364.

    Article  CAS  Google Scholar 

  • Riddell, J., Gazit, R., Garrison, B.S., Guo, G., Saadatpour, A., Mandal, P.K., Ebina, W., Volchkov, P., Yuan, G.C., Orkin, S.H., and Rossi, D.J. (2014). Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 157, 549–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbauer, F., and Tenen, D.G. (2007). Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7, 105–117.

    Article  CAS  PubMed  Google Scholar 

  • Sanjuan-Pla, A., Macaulay, I.C., Jensen, C.T., Woll, P.S., Luis, T.C., Mead, A., Moore, S., Carella, C., Matsuoka, S., Bouriez Jones, T., Chowdhury, O., Stenson, L., Lutteropp, M., Green, J.C.A., Facchini, R., Boukarabila, H., Grover, A., Gambardella, A., Thongjuea, S., Carrelha, J., Tarrant, P., Atkinson, D., Clark, S.A., Nerlov, C., and Jacobsen, S.E.W. (2013). Platelet-biased stem cells reside at the apex of the haematopoietic stemcell hierarchy. Nature 502, 232–236.

    Article  CAS  PubMed  Google Scholar 

  • Shin, J.Y., Hu, W., Naramura, M., and Park, C.Y. (2014). High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J Exp Med 211, 217–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starck, J., Cohet, N., Gonnet, C., Sarrazin, S., Doubeikovskaia, Z., Doubeikovski, A., Verger, A., Duterque-Coquillaud, M., and Morle, F. (2003). Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cellular Biol 23, 1390–1402.

    Article  CAS  Google Scholar 

  • Sun, J., Ramos, A., Chapman, B., Johnnidis, J.B., Le, L., Ho, Y.J., Klein, A., Hofmann, O., and Camargo, F.D. (2014). Clonal dynamics of native haematopoiesis. Nature 514, 322–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, K., and Yamanaka, S. (2015). A developmental framework for induced pluripotency. Development 142, 3274–3285.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., Yuan, R., and Ao, P. (2014a). Nonequilibrium work relation beyond the Boltzmann-Gibbs distribution. Phys Rev E 89, 062112.

    Article  Google Scholar 

  • Tang, Y., Yuan, R., and Ao, P. (2014b). Summing over trajectories of stochastic dynamics with multiplicative noise. J Chem Phys 141, 044125.

    Article  PubMed  Google Scholar 

  • Tang, Y., Yuan, R., Chen, J., and Ao, P. (2014c). Controlling symmetrybreaking states by a hidden quantity in multiplicative noise. Phys Rev E 90, 052121.

    Article  Google Scholar 

  • Tenen, D.G. (2003). Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 3, 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, R., Thieffry, D., and Kaufman, M. (1995). Dynamical behaviour of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull Math Biol 57, 247–276.

    CAS  PubMed  Google Scholar 

  • von Dassow, G., Meir, E., Munro, E.M., and Odell, G.M. (2000). The segment polarity network is a robust developmental module. Nature 406, 188–192.

    Article  Google Scholar 

  • Waddington, C.H. (1942). Canalization of development and the inheritance of acquired characters. Nature 150, 563–565.

    Article  Google Scholar 

  • Waddington, C.H. (2014). The strategy of the genes. (New York & London: Routledge).

    Google Scholar 

  • Wang, G., Su, H., Yu, H., Yuan, R., Zhu, X., and Ao, P. (2016). Endogenous network states predict gain or loss of functions for genetic mutations in hepatocellular carcinoma. J R Soc Interface 13, 20151115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, G., Zhu, X., Gu, J., and Ao, P. (2014a). Quantitative implementation of the endogenous molecular-cellular network hypothesis in hepatocellular carcinoma. Interface Focus 4, 20130064–20130064.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, G., Zhu, X., Hood, L., and Ao, P. (2013). From Phage lambda to human cancer: endogenous molecular-cellular network hypothesis. Quant Biol 1, 32–49.

    Article  CAS  Google Scholar 

  • Wang, P., Song, C., Zhang, H., Wu, Z., Tian, X.J., and Xing, J. (2014b). Epigenetic state network approach for describing cell phenotypic transitions. Interface Focus 4, 20130068–20130068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weissman, I.L. (2000). Stem cells. Cell 100, 157–168.

    Article  CAS  PubMed  Google Scholar 

  • Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc Sixth Int Congr Genet 1, 356–366.

    Google Scholar 

  • Yamada, T., Kihara-Negishi, F., Yamamoto, H., Yamamoto, M., Hashimoto, Y., and Oikawa, T. (1998). Reduction of DNA binding activity of the GATA-1 transcription factor in the apoptotic process induced by overexpression of PU.1 in murine erythroleukemia cells. Exp Cell Res 245, 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K.L., Ema, H., and Nakauchi, H. (2013). Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126.

    Article  CAS  PubMed  Google Scholar 

  • Young, N.S., Scheinberg, P., and Calado, R.T. (2008). Aplastic anemia. Curr Opin Hematology 15, 162–168.

    Article  Google Scholar 

  • Yuan, R., and Ao, P. (2012). Beyond ito versus stratonovich. J Stat Mech: Theory and Exp 2012, P07010.

    Article  Google Scholar 

  • Yuan, R., Zhu, X., Radich, J.P., and Ao, P. (2016). From molecular interaction to acute promyelocytic leukemia: Calculating leukemogenesis and remission from endogenous molecular-cellular network. Sci Rep 6, 24307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, R., Zhu, X., Wang, G., Li, S., and Ao, P. (2017). Cancer as robust intrinsic state shaped by evolution: a key issues review. Rep Prog Phys 80, 042701.

    Article  PubMed  Google Scholar 

  • Zhao, M., and Li, L. (2015). Regulation of hematopoietic stem cells in the niche. Sci China Life Sci 58, 1209–1215.

    CAS  PubMed  Google Scholar 

  • Zhu, X., Yuan, R., Hood, L., and Ao, P. (2015). Endogenous molecularcellular hierarchical modeling of prostate carcinogenesis uncovers robust structure. Prog Biophys Mol Biol 117, 30–42.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X.M., Yin, L., Hood, L., and Ao, P. (2004). Robustness, stability and efficiency of phage λ genetic switch: dynamical structure analysis. J Bioinform Comput Biol 02, 785–817.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Qing Nie, Dr. Xiaolong Liu, Dr. Ruibao Ren for insightful comments. We thank our lab members for critical discussions, Haowen Cao for a critical reading of the manuscript, and Tiantian Wu for a drawing artwork. This work was supported by the National Basic Research Program of China (2010CB529200) and National Natural Science Foundation of China (91029738).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Ao or Xiaomei Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Wang, G., Yuan, R. et al. Decoding early myelopoiesis from dynamics of core endogenous network. Sci. China Life Sci. 60, 627–646 (2017). https://doi.org/10.1007/s11427-017-9059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9059-y

Keywords

Navigation