Skip to main content
Log in

A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors have a regulatory function in developmental processes and stress responses. Notably a group of NAC members named NTLs (NTM1-Like) are membrane-tethered, ensuring plants rapidly respond to developmental changes and environmental stimuli. Our results indicated that ANAC089 was a membrane-tethered transcription factor and its truncated form was responsible for the physiological function in flowering time control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10: 239–247 1:CAS:528:DC%2BD2cXhtFKmsrk%3D, 10.1093/dnares/10.6.239, 15029955

    Article  PubMed  CAS  Google Scholar 

  2. Takada S, Hibara K, Ishida T, et al. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 2001, 128: 1127–1135 1:CAS:528:DC%2BD3MXjtFOlt7Y%3D, 11245578

    PubMed  CAS  Google Scholar 

  3. Vroemen C W, Mordhorst A P, Albrecht C, et al. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell, 2003, 15: 1563–1577 1:CAS:528:DC%2BD3sXlslWktbw%3D, 10.1105/tpc.012203, 12837947

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Kim Y S, Kim S G, Park J E, et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell, 2006, 18: 3132–3144 1:CAS:528:DC%2BD2sXit1CktA%3D%3D, 10.1105/tpc.106.043018, 17098812

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Kim S G, Kim S Y, Park C M. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta, 2007, 226: 647–654 1:CAS:528:DC%2BD2sXnsVeqtLc%3D, 10.1007/s00425-007-0513-3, 17410378

    Article  PubMed  CAS  Google Scholar 

  6. Xie Q, Frugis G, Colgan D, et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev, 2000, 14: 3024–3036 1:CAS:528:DC%2BD3cXptVWlt78%3D, 10.1101/gad.852200, 11114891

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. He X J, Mu R L, Cao W H, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J, 2005, 44: 903–916 1:CAS:528:DC%2BD28XjslGmuw%3D%3D, 10.1111/j.1365-313X.2005.02575.x, 16359384

    Article  PubMed  CAS  Google Scholar 

  8. Ko J H, Yang S H, Park A H, et al. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J, 2007, 50: 1035–1048 1:CAS:528:DC%2BD2sXnvVWnt70%3D, 10.1111/j.1365-313X.2007.03109.x, 17565617

    Article  PubMed  CAS  Google Scholar 

  9. Mitsuda N, Ohme-Takagi M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J, 2008, 56: 768–778 1:CAS:528:DC%2BD1MXhtlGksg%3D%3D, 10.1111/j.1365-313X.2008.03633.x, 18657234

    Article  PubMed  CAS  Google Scholar 

  10. Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46: 601–612 1:CAS:528:DC%2BD28XlsVGkt74%3D, 10.1111/j.1365-313X.2006.02723.x, 16640597

    Article  PubMed  CAS  Google Scholar 

  11. Yoon H K, Kim S G, Kim S Y, et al. Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Mol Cells, 2008, 25: 438–445 1:CAS:528:DC%2BD1cXntFartLw%3D, 18443413

    PubMed  CAS  Google Scholar 

  12. Lu P L, Chen N Z, An R, et al. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol, 2007, 63: 289–305 1:CAS:528:DC%2BD2sXitlSmtg%3D%3D, 10.1007/s11103-006-9089-8, 17031511

    Article  PubMed  CAS  Google Scholar 

  13. Tran L S, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004, 16: 2481–2498 1:CAS:528:DC%2BD2cXnvVartbY%3D, 10.1105/tpc.104.022699, 15319476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kim S G, Lee A K, Yoon H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J, 2008, 55: 77–88 1:CAS:528:DC%2BD1cXovVSnsb4%3D, 10.1111/j.1365-313X.2008.03493.x, 18363782

    Article  PubMed  CAS  Google Scholar 

  15. Kim S Y, Kim S G, Kim Y S, et al. Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res, 2007, 35: 203–213 1:CAS:528:DC%2BD2sXhtVyitrY%3D, 10.1093/nar/gkl1068, 17158162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Chen Y N, Slabaugh E, Brandizzi F. Membrane-tethered transcription factors in Arabidopsis thaliana: novel regulators in stress response and development. Curr Opin Plant Biol, 2008, 11: 695–701 1:CAS:528:DC%2BD1cXhsVWhsL%2FO, 10.1016/j.pbi.2008.10.005, 19019722

    Article  PubMed  CAS  Google Scholar 

  17. Seo P J, Kim S G, Park C M. Membrane-bound transcription factors in plants. Trends Plant Sci, 2008, 13: 550–556 1:CAS:528:DC%2BD1cXht1ensLzO, 10.1016/j.tplants.2008.06.008, 18722803

    Article  PubMed  CAS  Google Scholar 

  18. Hoppe T, Rape M, Jentsch S. Membrane-bound transcription factors: regulated release by RIP or RUP. Curr Opin Cell Biol, 2001, 13: 344–348 1:CAS:528:DC%2BD3MXktVaju7Y%3D, 10.1016/S0955-0674(00)00218-0, 11343906

    Article  PubMed  CAS  Google Scholar 

  19. Liu J X, Srivastava R, Che P, et al. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell, 2007, 19: 4111–4119 1:CAS:528:DC%2BD1cXhvF2htLo%3D, 10.1105/tpc.106.050021, 18156219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Iwata Y, Fedoroff N V, Koizumi N. Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell, 2008, 20: 3107–3121 1:CAS:528:DC%2BD1MXns1GmtA%3D%3D, 10.1105/tpc.108.061002, 19017746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Tajima H, Iwata Y, Iwano M, et al. Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response. Biochem Biophys Res Commun, 2008, 374: 242–247 1:CAS:528:DC%2BD1cXpslWjsro%3D, 10.1016/j.bbrc.2008.07.021, 18634751

    Article  PubMed  CAS  Google Scholar 

  22. Searle I, He Y, Turck F, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev, 2006, 20: 898–912 1:CAS:528:DC%2BD28XjsFGjs7o%3D, 10.1101/gad.373506, 16600915

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Grennan A K. Variations on a theme. Regulation of flowering time in Arabidopsis. Plant Physiol, 2006, 140: 399–400 1:CAS:528:DC%2BD28XjsV2itLs%3D, 10.1104/pp.104.900184, 16467483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Boss P K, Bastow R M, Mylne J S, et al. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell, 2004, 16Suppl: S18–S31 1:CAS:528:DC%2BD2cXlsFWlt7c%3D, 10.1105/tpc.015958, 15037730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Putterill J, Robson F, Lee K, et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847–857 1:CAS:528:DyaK2MXkslOmtb0%3D, 10.1016/0092-8674(95)90288-0, 7697715

    Article  PubMed  CAS  Google Scholar 

  26. Kardailsky I, Shukla V K, Ahn J H, et al. Activation tagging of the floral inducer FT. Science, 1999, 286: 1962–1965 1:CAS:528:DyaK1MXnvFShsrc%3D, 10.1126/science.286.5446.1962, 10583961

    Article  PubMed  CAS  Google Scholar 

  27. Samach A, Onouchi H, Gold S E, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000, 288: 1613–1616 1:CAS:528:DC%2BD3cXjvVGksL8%3D, 10.1126/science.288.5471.1613, 10834834

    Article  PubMed  CAS  Google Scholar 

  28. Corbesier L, Vincent C, Jang S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316: 1030–1033 1:CAS:528:DC%2BD2sXltlOjt70%3D, 10.1126/science.1141752, 17446353

    Article  PubMed  CAS  Google Scholar 

  29. Lee H, Suh S S, Park E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev, 2000, 14: 2366–2376 1:CAS:528:DC%2BD3cXntVSksrY%3D, 10.1101/gad.813600, 10995392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Michaels S D, Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 1999, 11: 949–956 1:CAS:528:DyaK1MXjvVajsLc%3D, 10.1105/tpc.11.5.949, 10330478

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Helliwell C A, Wood C C, Robertson M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J, 2006, 46: 183–192 1:CAS:528:DC%2BD28XksVWntrw%3D, 10.1111/j.1365-313X.2006.02686.x, 16623882

    Article  PubMed  CAS  Google Scholar 

  32. Tyler L, Thomas S G, Hu J, et al. Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol, 2004, 135: 1008–1019 1:CAS:528:DC%2BD2cXltlKisrc%3D, 10.1104/pp.104.039578, 15173565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Tamada Y, Yun J Y, Woo S C, et al. ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell, 2009, 21: 3257–3269 1:CAS:528:DC%2BD1MXhsFOgsLjL, 10.1105/tpc.109.070060, 19855050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. He Y. Control of the transition to flowering by chromatin modifications. Mol Plant, 2009, 2: 554–564 1:CAS:528:DC%2BD1MXptFCmtL0%3D, 10.1093/mp/ssp005, 19825638

    Article  PubMed  CAS  Google Scholar 

  35. Cao Y, Dai Y, Cui S, et al. Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell, 2008, 20: 2586–2602 1:CAS:528:DC%2BD1cXhsFWms7nE, 10.1105/tpc.108.062760, 18849490

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Zhai J, Liu J, Liu B, et al. Small RNA-directed epigenetic natural variation in Arabidopsis thaliana. PLoS Genet, 2008, 4: e1000056 10.1371/journal.pgen.1000056, 18437202

    Article  PubMed  PubMed Central  Google Scholar 

  37. Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743 1:STN:280:DyaK1M7mvVagsQ%3D%3D, 10.1046/j.1365-313x.1998.00343.x, 10069079

    Article  PubMed  CAS  Google Scholar 

  38. Su Z, Chai M F, Lu P L, et al. AtMTM1, a novel mitochondrial protein, may be involved in activation of the manganese-containing superoxide dismutase in Arabidopsis. Planta, 2007, 226: 1031–1039 1:CAS:528:DC%2BD2sXpt1Cnt74%3D, 10.1007/s00425-007-0547-6, 17522887

    Article  PubMed  CAS  Google Scholar 

  39. Nelson B K, Cai X, Nebenfuhr A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J, 2007, 51: 1126–1136 1:CAS:528:DC%2BD2sXhtFKnur%2FO, 10.1111/j.1365-313X.2007.03212.x, 17666025

    Article  PubMed  CAS  Google Scholar 

  40. Jefferson R A. The GUS reporter gene system. Nature, 1989, 342: 837–838 1:STN:280:DyaK3c%2FpvVSqsg%3D%3D, 10.1038/342837a0, 2689886

    Article  PubMed  CAS  Google Scholar 

  41. Hoppe T, Matuschewski K, Rape M, et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell, 2000, 102: 577–586 1:CAS:528:DC%2BD3cXmsFWit7Y%3D, 10.1016/S0092-8674(00)00080-5, 11007476

    Article  PubMed  CAS  Google Scholar 

  42. Auld K L, Silver P A. Transcriptional regulation by the proteasome as a mechanism for cellular protein homeostasis. Cell Cycle, 2006, 5: 1503–1505 1:CAS:528:DC%2BD28XpvF2qsLo%3D, 16861887

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Zhang, J., Wang, X. et al. A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana. Sci. China Life Sci. 53, 1299–1306 (2010). https://doi.org/10.1007/s11427-010-4085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4085-2

Keywords

Navigation