Skip to main content
Log in

Carbon density and distribution of six Chinese temperate forests

  • Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Quantifying forest carbon (C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling. Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age (42–59 years old) and growing under the same climate in northeastern China. The forests were an aspen-birch forest, a hardwood forest, a Korean pine plantation, a Dahurian larch plantation, a mixed deciduous forest, and a Mongolian oak forest. There were no significant differences in the C densities of ecosystem components (except for detritus) although the six forests had varying vegetation compositions and site conditions. However, the differences were significant when the C pools were normalized against stand basal area. The total ecosystem C density varied from 186.9 tC hm−2 to 349.2 tC hm−2 across the forests. The C densities of vegetation, detritus, and soil ranged from 86.3–122.7 tC hm−2, 6.5–10.5 tC hm−2, and 93.7–220.1 tC hm−2, respectively, which accounted for 39.7% ± 7.1% (mean ± SD), 3.3% ± 1.1%, and 57.0% ± 7.9% of the total C densities, respectively. The overstory C pool accounted for > 99% of the total vegetation C pool. The foliage biomass, small root (diameter < 5mm) biomass, root-shoot ratio, and small root to foliage biomass ratio varied from 2.08–4.72 tC hm−2, 0.95–3.24 tC hm−2, 22.0%–28.3%, and 34.5%–122.2%, respectively. The Korean pine plantation had the lowest foliage production efficiency (total biomass/foliage biomass: 22.6 g g−1) among the six forests, while the Dahurian larch plantation had the highest small root production efficiency (total biomass/small root biomass: 124.7 g g−1). The small root C density decreased with soil depth for all forests except for the Mongolian oak forest, in which the small roots tended to be vertically distributed downwards. The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests. The variability of C allocation patterns in a specific forest is jointly influenced by vegetation type, management history, and local water and nutrient availability. The study provides important data for developing and validating C cycling models for temperate forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO. Global forest resource assessment: Progress towards sustainable forest management. In: FAO (ed). FAO Forestry Paper. Rome, 2005: 147

  2. Fang J, Piao S, Zhao S. The carbon sink: The role of the middle and high latitudes terrestrial ecosystems in the northern Hemisphere. Acta Phytoecol Sinica, 2001, 25: 594–602

    Google Scholar 

  3. Goodale C L, Apps M J, Birdsey R A, et al. Forest carbon sinks in the northern hemisphere. Ecol Appl, 2002, 12: 891–899, 10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2

    Article  Google Scholar 

  4. Myneni R B, Dong J, Tucker C J, et al. A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci USA, 2001, 98: 14784–14789, 10.1073/pnas.261555198, 11742094, 1:CAS:528:DC%2BD38XptlGl

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. White A, Cannell M G R, Friend A D. The high-latitude terrestrial carbon sink: A model analysis. Global Change Biol, 2000, 6: 227–245, 10.1046/j.1365-2486.2000.00302.x

    Article  Google Scholar 

  6. Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234–240, 10.1038/363234a0, 1:CAS:528:DyaK3sXksFeiu78%3D

    Article  CAS  Google Scholar 

  7. Cao M, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393: 249–252, 10.1038/30460, 1:CAS:528:DyaK1cXjtlylsb4%3D

    Article  CAS  Google Scholar 

  8. Jastrow J D, R. Michael Miller, Matamala R, et al. Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biol, 2005, 11: 2057–2064, 10.1111/j.1365-2486.2005.01077.x

    Article  Google Scholar 

  9. Phillips O L, Malhi Y, Higuchi N, et al. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science, 1998, 282: 439–442, 10.1126/science.282.5388.439, 9774263, 1:CAS:528:DyaK1cXmslaqu74%3D

    Article  PubMed  CAS  Google Scholar 

  10. Schimel D S, House J I, Hibbard K A. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169–172, 10.1038/35102500, 11700548, 1:CAS:528:DC%2BD3MXosFaisLo%3D

    Article  PubMed  CAS  Google Scholar 

  11. Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263: 185–190, 10.1126/science.263.5144.185, 17839174, 1:CAS:528:DyaK2cXhs12gsbc%3D

    Article  PubMed  CAS  Google Scholar 

  12. Malhi Y, Baldocchi D D, Jarvis P G. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ, 1999, 22: 715–740, 10.1046/j.1365-3040.1999.00453.x, 1:CAS:528:DyaK1MXksVartb8%3D

    Article  CAS  Google Scholar 

  13. Litton C M, Raich J W, Ryan M G. Carbon allocation in forest ecosystems. Global Change Biol, 2007, 13: 2089–2109, 10.1111/j.1365-2486.2007.01420.x

    Article  Google Scholar 

  14. Wang C, Gower S T, W Y H, et al. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biol, 2001, 7: 719–730, 10.1046/j.1354-1013.2001.00441.x

    Article  Google Scholar 

  15. Law B E, Thornton P E, Irvine J, et al. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biol, 2001, 7: 755–777, 10.1046/j.1354-1013.2001.00439.x

    Article  Google Scholar 

  16. Litton C M, Ryan M G, Knight D H. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecol Appl, 2004, 14: 460–475, 10.1890/02-5291

    Article  Google Scholar 

  17. Peichl M, Arain A A. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agr Forest Meteorol, 2006, 140: 51–63, 10.1016/j.agrformet.2006.08.004

    Article  Google Scholar 

  18. Pregitzer K S, Euskirchen E S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biol, 2004, 10: 2052–2077, 10.1111/j.1365-2486.2004.00866.x

    Article  Google Scholar 

  19. Wang C, Bond-Lamberty B, Gower S T. Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Global Change Biol, 2003, 9: 1066–1079, 10.1046/j.1365-2486.2003.00645.x

    Article  Google Scholar 

  20. Zhu B, Wang X, Fang J, et al. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, northeast China. J Plant Res, 2010, 123: 439–452, 10.1007/s10265-009-0301-1, 20127501

    Article  PubMed  Google Scholar 

  21. Litton C M, Ryan M G, Tinker D B, et al. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Can J Forest Res, 2003, 33: 351–363, 10.1139/x02-181

    Article  Google Scholar 

  22. Fang J, Guo Z, Piao S, et al. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China Ser-D: Earth Sci, 2007, 50: 1341–1350, 10.1007/s11430-007-0049-1, 1:CAS:528:DC%2BD2sXht1yiurrO

    Article  CAS  Google Scholar 

  23. Luyssaert S, Inglima I, Jung M, et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biol, 2007, 13: 2509–2537, 10.1111/j.1365-2486.2007.01439.x

    Article  Google Scholar 

  24. Yang J, Wang C. Soil carbon storage and flux of temperate forest ecosystems in northeastern China. Acta Ecol Sinica, 2005, 25: 2875–2882, 1:CAS:528:DC%2BD28Xmt1ClsQ%3D%3D

    CAS  Google Scholar 

  25. Peng C, Zhou X, Zhao S, et al. Quantifying the response of forest carbon balance to future climate change in northeastern China: Model validation and prediction. Global Planetary Change, 2009, 66: 179–194, 10.1016/j.gloplacha.2008.12.001

    Article  Google Scholar 

  26. Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecol Manage, 2006, 222: 9–16, 10.1016/j.foreco.2005.10.074

    Article  Google Scholar 

  27. Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009–1013, 10.1038/nature07944, 19396142, 1:CAS:528:DC%2BD1MXkvFKhtLc%3D

    Article  PubMed  CAS  Google Scholar 

  28. Wang C K, Yang J Y, Zhang Q Z. Soil respiration in six temperate forests in China. Global Change Biol, 2006, 12: 2103–2114, 10.1111/j.1365-2486.2006.01234.x

    Article  Google Scholar 

  29. Quan X, Wang C, Zhang Q, et al. Dynamics of fine roots in five Chinese temperate forests. J Plant Res, 2010, 123: 497–507, 10.1007/s10265-010-0322-9, 20217175

    Article  PubMed  Google Scholar 

  30. Zhang Q, Wang C, Wang X, et al. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecol Manage, 2009, 258: 722–727, 10.1016/j.foreco.2009.05.009

    Article  Google Scholar 

  31. Vogt K A, Vogt D J, Bloomfield J. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil, 1998, 200: 71–89, 10.1023/A:1004313515294, 1:CAS:528:DyaK1cXktVKktb4%3D

    Article  CAS  Google Scholar 

  32. Gower S T, Vogel J G, Norman J M, et al. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J Geophys Res, 1997, 102: 29029–29042, 10.1029/97JD02317, 1:CAS:528:DyaK1cXnslygtw%3D%3D

    Article  CAS  Google Scholar 

  33. Wang X P, Fang J Y, Zhu B. Forest biomass and root-shoot allocation in northeast China. Forest Ecol Manage, 2008, 255: 4007–4020, 10.1016/j.foreco.2008.03.055

    Article  Google Scholar 

  34. Martin J L, Gower S T, Plaut J, et al. Carbon pools in a boreal mixedwood logging chronosequence. Global Change Biol, 2005, 11: 1883–1894

    Google Scholar 

  35. Vargas R, Allen M F, Allen E B. Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Global Change Biol, 2008, 14: 109–124

    Google Scholar 

  36. Jackson R, Mooney H, Schulze E. A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA. 1997, 94: 7362, 10.1073/pnas.94.14.7362, 11038557, 1:CAS:528:DyaK2sXksFOmtL4%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Chiba Y. Architectural analysis of relationship between biomass and basal area based on pipe model theory. Ecol Model, 1998, 108: 219–225, 10.1016/S0304-3800(98)00030-1

    Article  Google Scholar 

  38. Baker T, Phillips O, Malhi Y, et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biol, 2004, 10: 545–562, 10.1111/j.1365-2486.2004.00751.x

    Article  Google Scholar 

  39. Helmisaari H, Derome J, Nojd P, et al. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol, 2007, 27: 1493, 17669739, 1:CAS:528:DC%2BD2sXhtlWjsrvO

    Article  PubMed  CAS  Google Scholar 

  40. Makela A, Valentine H T, Helmisaari H S. Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytol, 2008, 180: 114–123, 10.1111/j.1469-8137.2008.02558.x, 18637066, 1:CAS:528:DC%2BD1cXht1ait7bM

    Article  PubMed  CAS  Google Scholar 

  41. Litton C M, Giardina C P. Below-ground carbon flux and partitioning: Global patterns and response to temperature. Funct Ecol, 2008, 22: 941–954, 10.1111/j.1365-2435.2008.01479.x

    Article  Google Scholar 

  42. Aber J, Melillo J, Nadelhoffer K, et al. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: A comparison of two methods. Oecologia, 1985, 66: 317–321, 10.1007/BF00378292

    Article  Google Scholar 

  43. Pastor J, Post W. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochem, 1986, 2: 3–27, 10.1007/BF02186962

    Article  Google Scholar 

  44. Vande Walle I, Mussche S, Samson R, et al. The above- and belowground carbon pools of two mixed deciduous forest stands located in east-Flanders (Belgium). Ann Forest Sci, 2001, 58: 507–517, 10.1051/forest:2001141

    Article  Google Scholar 

  45. Canadell J, Jackson R, Ehleringer J, et al. Maximum rooting depth of vegetation types at the global scale. Oecologia, 1996, 108: 583–595, 10.1007/BF00329030

    Article  Google Scholar 

  46. Brassard B W, Chen H Y H, Bergeron Y. Influence of environmental variability on root dynamics in northern forests. Crit Rev Plant Sci, 2009, 28: 179–197, 10.1080/07352680902776572

    Article  Google Scholar 

  47. Jobbágy E, Jackson R. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochem, 2001, 53: 51–77, 10.1023/A:1010760720215

    Article  Google Scholar 

  48. Kozlowski T T, Pallardy S G. Physiology of Woody Plants. San Diego: San Diego Academic Press, 1996

    Google Scholar 

  49. Jackson R B, Canadell J, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes. Oecologia, 1996, 108: 389–411, 10.1007/BF00333714

    Article  Google Scholar 

  50. Gower S T, Richards J H. Larches: Deciduous conifers in an evergreen world. Bioscience, 1990, 40: 818–826, 10.2307/1311484

    Article  Google Scholar 

  51. Fang J Y, Liu G H, Zhu B, et al. Carbon budgets of three temperate forest ecosystems in Dongling Mt., Beijing, China. Sci China Ser-D Earth Sci, 2007, 50: 92–101, 10.1007/s11430-007-2031-3

    Article  Google Scholar 

  52. Gough C, Vogel C, Kazanski C, et al. Coarse woody debris and the carbon balance of a north temperate forest. Forest Ecol Manage, 2007, 244: 60–67, 10.1016/j.foreco.2007.03.039

    Article  Google Scholar 

  53. Sturtevant B, Bissonette J, Long J, et al. Coarse woody debris as a function of age, stand structure, and disturbance in boreal Newfoundland. Ecol Appl, 1997, 7: 702–712, 10.1890/1051-0761(1997)007[0702:CWDAAF]2.0.CO;2

    Article  Google Scholar 

  54. Yanai R, Arthur M, Siccama T, et al. Challenges of measuring forest floor organic matter dynamics: Repeated measures from a chronosequence. Forest Ecol Manage, 2000, 138: 273–283, 10.1016/S0378-1127(00)00402-3

    Article  Google Scholar 

  55. Cornelissen J, Grime J, Marzano B, et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol, 1999, 143: 191–200, 10.1046/j.1469-8137.1999.00430.x

    Article  Google Scholar 

  56. Liu S, Li X, Niu L. The degradation of soil fertility in pure larch plantations in the northeastern part of China. Ecol Eng, 1998, 10: 75–86, 10.1016/S0925-8574(97)10024-6

    Article  Google Scholar 

  57. Chapin III F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology. New York: Springer-Verlag, New York, Inc., 2002

    Google Scholar 

  58. Jobbágy E, Jackson R. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl, 2000, 10: 423–436, 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  59. Binkley D. The influence of tree species on forest soils: Processes and patterns. Agronomy Society Of New Zealand Special Publication, 1995: 1–34

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChuanKuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Wang, C. Carbon density and distribution of six Chinese temperate forests. Sci. China Life Sci. 53, 831–840 (2010). https://doi.org/10.1007/s11427-010-4026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4026-0

Keywords

Navigation