Skip to main content
Log in

Quantification of soil organic carbon sequestration potential in cropland: A model approach

  • Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Agroecosystems have a critical role in the terrestrial carbon cycling process. Soil organic carbon (SOC) in cropland is of great importance for mitigating atmospheric carbon dioxide increases and for global food security. With an understanding of soil carbon saturation, we analyzed the datasets from 95 global long-term agricultural experiments distributed across a vast area spanning wide ranges of temperate, subtropical and tropical climates. We then developed a statistical model for estimating SOC sequestration potential in cropland. The model is driven by air temperature, precipitation, soil clay content and pH, and explains 58% of the variation in the observed soil carbon saturation (n=76). Model validation using independent data observed in China yielded a correlation coefficient R2 of 0.74 (n=19, P<0.001). Model sensitivity analysis suggested that soils with high clay content and low pH in the cold, humid regions possess a larger carbon sequestration potential than other soils. As a case study, we estimated the SOC sequestration potential by applying the model in Henan Province. Model estimations suggested that carbon (C) density at the saturation state would reach an average of 32 t C ha−1 in the top 0–20 cm soil depth. Using SOC density in the 1990s as a reference, cropland soils in Henan Province are expected to sequester an additional 100 Tg C in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batjes N H. Total carbon and nitrogen in the soils of the world. Eur J Soil Sci, 1996, 47: 151–163, 10.1111/j.1365-2389.1996.tb01386.x, 1:CAS:528:DyaK28XlslKnsLo%3D

    CAS  Google Scholar 

  2. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623–1627, 15192216, 10.1126/science.1097396, 1:CAS:528:DC%2BD2cXks1Cgsrk%3D

    PubMed  CAS  Google Scholar 

  3. Chapin F S, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology. Springer, 2002: 159–163

  4. Bellamy P H, Loveland P J, Bradley R I, et al. Carbon losses from all soils across England and Wales 1978–2003. Nature, 2005, 437: 245–248, 16148931, 10.1038/nature04038, 1:CAS:528:DC%2BD2MXpsleku70%3D

    PubMed  CAS  Google Scholar 

  5. Li C S, Zhuang Y H, Frolking S, et al. Modeling soil organic carbon change in croplands of China. Ecol Appl, 2003, 13: 327–336, 10.1890/1051-0761(2003)013[0327:MSOCCI]2.0.CO;2

    Google Scholar 

  6. Follett R F. Soil management concepts and carbon sequestration in cropland soils. Soil Till Res, 2001, 61: 77–92, 10.1016/S0167-1987(01)00180-5

    Google Scholar 

  7. Smith P. Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agrono, 2004, 20: 229–236, 10.1016/j.eja.2003.08.002, 1:CAS:528:DC%2BD3sXhtVWis77O

    CAS  Google Scholar 

  8. Sun W J, Huang Y, Zhang W, et al. Key issues on soil carbon sequestration potential in agricultural soils (in Chinese). Adv Earth Sci, 2008, 23: 996–1004, 1:CAS:528:DC%2BD1cXhtlCju7vF

    CAS  Google Scholar 

  9. Haynes R J, Naidu R. Influence of lime, fertilizer and manure appli cations on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosys, 1998, 51: 123–137, 10.1023/A:1009738307837

    Google Scholar 

  10. West T O, Post W M. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Society of America Journal, 2002, 66: 1930–1946, 10.2136/sssaj2002.1930, 1:CAS:528:DC%2BD38XoslKhsbk%3D

    CAS  Google Scholar 

  11. Alvarez R. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manage, 2005, 21: 38–52, 10.1079/SUM2005291

    Google Scholar 

  12. Lal R. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems. Land Degrad Dev, 2002, 13: 469–478, 10.1002/ldr.531

    Google Scholar 

  13. Lu F, Wang X K, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Global Change Biol, 2009, 15: 281–305, 10.1111/j.1365-2486.2008.01743.x

    Google Scholar 

  14. Yan H M, Cao M K, Liu J Y, et al. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agr Ecosyst Environ, 2007, 121: 325–335, 10.1016/j.agee.2006.11.008, 1:CAS:528:DC%2BD2sXjsVGjt7k%3D

    CAS  Google Scholar 

  15. Cao M K, Prince S D, Li K R, et al. Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biol, 2003, 9: 536–546, 10.1046/j.1365-2486.2003.00617.x

    Google Scholar 

  16. Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biol, 1998, 4: 185–198, 10.1046/j.1365-2486.1998.00125.x

    Google Scholar 

  17. Kelly R H, Parton W J, Crocker G J, et al. Simulating trends in soil organic carbon in long-term experiments using the CENTURY model. Geoderma, 1997, 81: 75–90, 10.1016/S0016-7061(97)00082-7

    Google Scholar 

  18. Li C S, Frolking S, Crocker G J, et al. Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma, 1997, 81: 45–60, 10.1016/S0016-7061(97)00080-3

    Google Scholar 

  19. Coleman K, Jenkinson D S, Crocker G J, et al. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma, 1997, 81: 29–44, 10.1016/S0016-7061(97)00079-7

    Google Scholar 

  20. Izaurralde R C, Williams J R, Mcgill W B, et al. Simulating soil C dynamics with EPIC: model description and testing against long-term data. Ecol Model, 2006, 192: 362–384, 10.1016/j.ecolmodel.2005.07.010

    Google Scholar 

  21. Smith P, Smith J U, Powlson D S, et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 1997, 81: 153–225, 10.1016/S0016-7061(97)00087-6

    Google Scholar 

  22. Stewart C E, Paustian K, Conant R T, et al. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 2007, 86: 19–31, 10.1007/s10533-007-9140-0, 1:CAS:528:DC%2BD2sXhtVagtbbE

    CAS  Google Scholar 

  23. West T O, Six J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Clim Change, 2007, 80: 25–41, 10.1007/s10584-006-9173-8, 1:CAS:528:DC%2BD2sXmt1Ojug%3D%3D

    CAS  Google Scholar 

  24. Johnson M G, Levine E R, Kern J S. Soil organic matter: distribution, genesis, and management to reduce greenhouse gas emissions. Water, Air Soil Poll, 1995, 82: 593–615, 10.1007/BF00479414, 1:CAS:528:DyaK2MXot1OltLo%3D

    CAS  Google Scholar 

  25. Chapin F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology. Heidelberg: Springer, 2002: 6

    Google Scholar 

  26. Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential. Global Change Biol, 2000, 6: 317–327, 10.1046/j.1365-2486.2000.00308.x

    Google Scholar 

  27. Ramankutty N and Foley J A. Characterizing patterns of global land use: an analysis of global croplands data. Global Biogeochem Cy, 1998, 12: 667–685, 10.1029/98GB02512, 1:CAS:528:DyaK1cXotV2gs70%3D

    CAS  Google Scholar 

  28. Foley J A, Costa M H, Delire C, et al. Green Surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ, 2003, 1: 38–44

    Google Scholar 

  29. Leff B. Mapping and analysis of human-dominated ecosystems on a global scale: a look at croplands and urban areas. M.S. Thesis. Wisconsin: University of Wisconsin, Madison, 2003

    Google Scholar 

  30. Harmonized World Soil Database Version 1.0. Rome, Italy and Laxenburg, Austria: FAO/IIASA/ISRIC/ISSCAS/JRC, 2008

  31. Liu Q H, Shi X Z, Weindorf D C, et al. Soil organic carbon storage of paddy soils in China using the 1:1,000,000 soil database and their implications for C sequestration. Global Biogeochem Cy, 2006, 20: GB3024, 10.1029/2006GB002731, 1:CAS:528:DC%2BD28XhtFymsrnL

    Google Scholar 

  32. Shi X Z, Yu D S, Warner E D, et al. Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Surv Horiz, 2004, 45: 129–136

    Google Scholar 

  33. Yu D S, Shi X Z, Wang H J, et al. Regional patterns of soil organic carbon stocks in China. J Environ Manage, 2007, 85: 680–689, 17126986, 10.1016/j.jenvman.2006.09.020, 1:CAS:528:DC%2BD2sXhtlertL3E

    PubMed  CAS  Google Scholar 

  34. ArcGIS: the complete geographic information system Version 9.2. Redlands, California: ESRI Inc., 2006

  35. Liu J Y, Liu M L, Tian H Q, et al. Spatial and temporal patterns of China’s cropland during 1990–2000: an analysis based on Landsat TM data. Remote Sens Environ, 2005, 98: 442–456, 10.1016/j.rse.2005.08.012

    Google Scholar 

  36. Pan G X, Li L Q, Wu L S, et al. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Global Change Biol, 2003, 10: 79–92, 10.1111/j.1365-2486.2003.00717.x

    Google Scholar 

  37. Guo L B, Gifford R M. Soil carbon stocks and land use change: a meta analysis. Global Change Biol, 2002, 8: 345–360, 10.1046/j.1354-1013.2002.00486.x

    Google Scholar 

  38. Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl, 2000, 10: 423–436, 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Google Scholar 

  39. Wang S Q, Huang M, Shao X M, et al. Vertical distribution of soil organic carbon in China. Environ Manage, 2004, 33: 200–209, 10.1007/s00267-003-9130-5

    Google Scholar 

  40. 1stOpt (First Optimization) Version 2.0. Beijing: 7D-Soft High Technology Inc., 2006

  41. SPSS Version 16.0. Illinois: SPSS Inc., 2007

  42. OriginPro 8. Massachusetts: OriginLab Corporation, 2008

  43. Alvarez R, Lavado R S. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma, 1998, 83: 127–141, 10.1016/S0016-7061(97)00141-9

    Google Scholar 

  44. Dai W H, Huang Y. Relation of soil organic matter concentration to climate and altitude in zonal soils of China. Catena, 2006, 65: 87–94, 10.1016/j.catena.2005.10.006

    Google Scholar 

  45. Miller A J, Amundson R, Burke I C, et al. The effect of climate and cultivation on soil organic C and N. Biogeochemistry, 2004, 67: 57–72, 10.1023/B:BIOG.0000015302.16640.a5, 1:CAS:528:DC%2BD2cXhtFSju7c%3D

    CAS  Google Scholar 

  46. Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil, 2002, 241: 155–176, 10.1023/A:1016125726789, 1:CAS:528:DC%2BD38XltV2jsbo%3D

    CAS  Google Scholar 

  47. Willmott C J and Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res, 2005, 30: 79–82, 10.3354/cr030079

    Google Scholar 

  48. Willmott C J. Some comments on the evaluation of model performance. Bull Am Meteorol Soc, 1982, 63: 1309–1369, 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2

    Google Scholar 

  49. Huang Y, Yu Y Q, Zhang W. Agro-C: a biogeophysical model for simulating the carbon budget of agroecosystems. Agr Forest Meteorol, 2009, 149: 106–129, 10.1016/j.agrformet.2008.07.013

    Google Scholar 

  50. Loague K, Green R E. Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol, 1991, 7: 51–73, 10.1016/0169-7722(91)90038-3, 1:CAS:528:DyaK3MXktFCru74%3D

    CAS  Google Scholar 

  51. Müller T, Höper H. Soil organic matter turnover as a function of the soil clay content: consequences for model applications. Soil Biol Biochem, 2004, 36: 877–888, 10.1016/j.soilbio.2003.12.015, 1:CAS:528:DC%2BD2cXktVems7Y%3D

    Google Scholar 

  52. Thornton P E, Running S W, White M A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol, 1997, 190: 214–251, 10.1016/S0022-1694(96)03128-9

    Google Scholar 

  53. Zhang W. Estimation of methane emissions from rice fields of China based on integration of model and GIS technology. Ph. D. Dissertation. Nanjing: Nanjing Agricultural University, 2004

    Google Scholar 

Appendix B: References

  1. Coleman K, Jenkinson D S, Crocker G J, et al. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma, 1997, 81: 29–44, 10.1016/S0016-7061(97)00079-7

    Google Scholar 

  2. Smith P, Smith J U, Powlson D S, et al. A comparison of the performance of nine soil organic matter models using seven long-term experimental datasets. Geoderma, 1997, 81: 153–225, 10.1016/S0016-7061(97)00087-6

    Google Scholar 

  3. Smith P, Smith J U, Falloon P, et al. SOMNET: a global network and database of soil organic matter models and long-term experimental datasets. 2001. Available from: http://www.rothamsted.bbsrc.ac.uk/aen/somnet/intro.html

  4. Dalal R C, Mayer R J. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. I. Overall changes in soil properties and trends in winter cereal yields. Aust J Soil Res, 1986, 24: 265–279, 10.1071/SR9860265, 1:CAS:528:DyaL28XkvFKmsL8%3D

    CAS  Google Scholar 

  5. Dalal R C, Mayer R J. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. II. Total organic carbon and its rate of loss from the soil profile. Aust J Soil Res, 1986, 24: 281–292, 10.1071/SR9860281, 1:CAS:528:DyaL28XkvFKmsLw%3D

    CAS  Google Scholar 

  6. Chilcott C R, Dalal R C, Parton W J, et al. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. IX. Simulation of soil carbon and nitrogen pools using CENTURY model. Aust J Soil Res, 2007, 45: 206–217, 10.1071/SR06105, 1:CAS:528:DC%2BD2sXlsFCitrc%3D

    CAS  Google Scholar 

  7. Heenan D P, Chan K Y, Knight P G. Long-term impact of rotation, tillage and stubble management on the loss of soil organic carbon and nitrogen from a Chromic Luvisol. Soil Till Res, 2004, 76: 59–68, 10.1016/j.still.2003.08.005

    Google Scholar 

  8. Heenan D P, Mcghie W J, Thomson E M, et al. Decline in soil organic carbon and total nitrogen in relation to tillage, stubble management, and rotation. Aust J Exp Agr, 1995, 35: 877–884, 10.1071/EA9950877, 1:CAS:528:DyaK28Xhs1yiu7Y%3D

    CAS  Google Scholar 

  9. Holford I C R. Changes in nitrogen and organic carbon of wheat-growing soils after various periods of grazed lucerne, extended fallowing and continuous wheat. Aust J Soil Res, 1981, 19: 239–249, 10.1071/SR9810239

    Google Scholar 

  10. Holford I C R. Effects of eight year rotations of grain sorghum with lucerne, annual legume, wheat and long fallow on nitrogen and organic carbon in two contrasting soils. Aust J Soil Res, 1990, 28: 277–291, 10.1071/SR9900277, 1:CAS:528:DyaK3cXmtFSks7s%3D

    CAS  Google Scholar 

  11. Holford I C R, Crocker G J. A comparison of chickpeas and pasture legumes for sustaining yields and nitrogen status of subsequent wheat. Aust J Agr Res, 1997, 48: 305–315, 10.1071/A96072

    Google Scholar 

  12. Holford I C R, Schweitzer B E, Crocker G J. Comparative effects of subterranean clover, medic, lucerne, and chickpea in wheat rotations, on nitrogen, organic carbon, and moisture in two contrasting soils. Aust J Soil Res, 1998, 36: 57–72, 10.1071/S97036

    Google Scholar 

  13. Blair N, Faulkner R D, Till A R, et al. Long-term management impacts on soil C, N and physical fertility. Part III: Tamworth crop rotation experiment. Soil Till Res, 2006, 91: 48–56, 10.1016/j.still.2005.11.003

    Google Scholar 

  14. Harmonized World Soil Database Version 1.0. Rome, Italy and Laxenburg, Austria: FAO/IIASA/ISRIC/ISSCAS/JRC, 2008

  15. Franko U, Kuka K, Romanenko I A, et al. Validation of the CANDY model with Russian long-term experiments. Reg Environ Change, 2007, 7: 79–91, 10.1007/s10113-007-0027-3

    Google Scholar 

  16. Frankinet M, Raimond Y, Destain J, et al. Organic matter management and calcific amendments in order to maintain or improve soil fertility. In: Paoletti M G, Foissner M, Coleman D C. Soil Biota, Nutrient Cycling, and Farming Systems. Florida: CRC Press, 1993: 27–40

    Google Scholar 

  17. Van Wesemael B, Lettens S, Roelandt C, et al. Changes in soil carbon stocks from 1960 to 2000 in the main Belgian cropland areas. Biotechnologie, Agronomie, Société et Environnement, 2004, 8: 133–139

    Google Scholar 

  18. Bayer C, Lovato T, Dieckow J, et al. A method for estimating coefficients of soil organic matter dynamics based on long-term experiments. Soil Till Res, 2006, 91: 217–226, 10.1016/j.still.2005.12.006

    Google Scholar 

  19. Bayer C, Martin-Neto L, Mielniczuk J, et al. Effect of no-till cropping systems on soil organic matter in a sandy clay loam Acrisol from Southern Brazil monitored by electron spin resonance and nuclear magnetic resonance. Soil Till Res, 2000, 53: 95–104, 10.1016/S0167-1987(99)00088-4

    Google Scholar 

  20. Bayer C, Martin-Neto L, Mielniczuk J, et al. Changes in soil organic matter fractions under subtropical no-till cropping systems. Soil Sci Soc Am J, 2001, 65: 1473–1478, 10.2136/sssaj2001.6551473x, 1:CAS:528:DC%2BD38XptlWm

    CAS  Google Scholar 

  21. Grant R F, Juma N G, Robertson J A, et al. Long-term changes in soil carbon under different fertilizer, manure, and rotation testing the mathematical model ecosys with data from the Breton plots. Soil Sci Soc Am J, 2001, 65: 205–214, 10.2136/sssaj2001.651205x, 1:CAS:528:DC%2BD3MXhvFSltbY%3D

    CAS  Google Scholar 

  22. Izaurralde R C, Mcgill W B, Robertson J A, et al. Carbon balance of the Breton classical plots over half a century. Soil Sci Soc Am J, 2001, 65: 431–441, 10.2136/sssaj2001.652431x, 1:CAS:528:DC%2BD38Xpt1Kq

    CAS  Google Scholar 

  23. Campbell C A, Mcconkey B G, Biederbeck V O, et al. Long-term effects of tillage and fallow-frequency on soil quality attributes in a clay soil in semiarid southwestern saskatchewan. Soil Till Res, 1998, 46: 135–144, 10.1016/S0167-1987(98)00027-0

    Google Scholar 

  24. Campbell C A, Mcconkey B G, Zentner R P, et al. Tillage and crop rotation effects on soil organic C and N in a coarse-textured Typic Haploboroll in southwestern Saskatchewan. Soil Till Res, 1996, 37: 3–14, 10.1016/0167-1987(95)01002-5

    Google Scholar 

  25. Campbell C A, Mcconkey B G, Zentner R P, et al. Long-term effects of tillage and crop rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan. Can J Soil Sci, 1996, 76: 395–402

    Google Scholar 

  26. Easter M, Paustian, K., Killian, K. et al. The GEFSOC soil carbon modelling system: a tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon. Agriculture, Ecosyst Environ, 2007, 122: 13–25, 10.1016/j.agee.2007.01.004, 1:CAS:528:DC%2BD2sXjvFamtro%3D

    CAS  Google Scholar 

  27. Larney F J, Bremer E, Janzen H H, et al. Changes in total, mineralizable and light fraction soil organic matter with cropping and tillage intensities in semiarid southern Alberta, Canada. Soil Till Res, 1997, 42: 229–240, 10.1016/S0167-1987(97)00011-1

    Google Scholar 

  28. Mclaughlin N A, Rudra R P, Ogilvie J R. Simulation of nitrate loss in tile flow for central Canadian conditions. Can Biosyst Eng, 2006, 48: 1.41–1.54

    Google Scholar 

  29. Yang X M, Drury C F, Reynolds W D, et al. Impacts of long-term and recently imposed tillage practices on the vertical distribution of soil organic carbon. Soil Till Res, 2008, 100: 120–124, 10.1016/j.still.2008.05.003

    Google Scholar 

  30. Chen Z M, Zhou C S. Beijing Hechao soil fertility report (in Chinese). Soil Fertil, 1996, 1: 6–11

    Google Scholar 

  31. Liu E K, Zhao B Q, Hu C H, et al. Effects of long-term nitrogen, phosphorus and potassium fertilizer applications on maize yield and soil fertility (in Chinese). Plant Nutr Fertil Sci, 2007, 13: 789–794, 1:CAS:528:DC%2BD1cXhtFClurzN

    CAS  Google Scholar 

  32. Song Y L. The effects of long-term fertilization on crop yield and aqui-cinnamon soil fertility (in Chinese). Beijing: Graduate School of Chinese Academy of Agricultural Sciences, 2006

    Google Scholar 

  33. Song Y L, Tang H J, Li X P. The effects of long-term fertilization on crop yield and aqui-cinnamon soil organic matter (in Chinese). Acta Agr Boreali-Sin, 2007, 22(supplement): 100–105

    Google Scholar 

  34. Song Y L, Yuan F M. Effect of combination of NPK chemical fertilizer and different organic materials on crop yield and soil organic matter (in Chinese). Acta Agr Boreali-Sini, 2002, 17: 73–76

    Google Scholar 

  35. Yang S M, Li F M, Suo D R, et al. Soil fertility change of irrigated desert soil under long-term fertilization (in Chinese). In: Xu M G, Liang G Q, Zhang F D. China Soil Fertility Change. Beijing: China Agricultural Science and Technology Press. 2006. 235–258

    Google Scholar 

  36. Su Y Z, Wang F, Suo D R, et al. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat-wheat-maize cropping system in northwest China. Nutr Cycl Agroecosyst, 2006, 75: 285–295, 10.1007/s10705-006-9034-x, 1:CAS:528:DC%2BD28Xot12jtrc%3D

    CAS  Google Scholar 

  37. Yang S M, Malhi S S, Li F M, et al. Long-term effects of manure and fertilization on soil organic matter and quality parameters of a calcareous soil in NW China. J Plant Nutr Soil Sci, 2007, 170: 234–243, 10.1002/jpln.200622012, 1:CAS:528:DC%2BD2sXlsVags74%3D

    CAS  Google Scholar 

  38. Li K J, Ma J Y, Cao C Y, et al. Effect of the long-term different organic fertilizer applications on crop yield and soil properties (in Chinese). J Hebei Agr Sci, 2007, 11: 60–63

    Google Scholar 

  39. Ma J Y, Li K J, Cao C Y, et al. Effect of long-term located organic-inorganic fertilizer application on fluvo-aquic soil fertility and crop yield (in Chinese). Plant Nutr Fertil Sci, 2007, 13: 236–241, 1:CAS:528:DC%2BD1cXmsFSntb0%3D

    CAS  Google Scholar 

  40. Sun Y M, Jia L L, Han B W, et al. Effects of optimized nitrogen fertilization based on soil inorganic nitrogen test on winter wheat yield and nitrogen balance (in Chinese). J Hebei Agr Sci, 2008, 12: 73–75

    Google Scholar 

  41. Li K J, Ma J Y, Cao C Y, et al. Loamy Chao Soil fertility change under long-term fertilization (in Chinese). In: Xu M G, Liang G Q, Zhang F D. China Soil Fertility Change. Beijing: China Agricultural Science and Technology Press. 2006. 357–362

    Google Scholar 

  42. Meng K, Wang D L, Zhang L. Decomposition, accumulation and their variant pattern of organic matter in black soil area (in Chinese). Soil Environ Sci, 2002, 11: 42–46

    Google Scholar 

  43. Sui Y Y, Zhang X Y, Jiao X G, et al. Effect of long-term different fertilizer applications on organic matter and nitrogen of black farmland (in Chinese). J Soil Water Conserv, 2005, 19: 190–192, 200

    Google Scholar 

  44. Zhang X L, Zhou B K, Sun L, et al. Black Soil acidity as affected by applying fertilizer and manure (in Chinese). Chin J Soil Sci, 2008, 39: 1221–1223, 1:CAS:528:DC%2BD1MXhtVyrs7jP

    CAS  Google Scholar 

  45. Zhou B K, Zhang X L, Xie H G, et al. Thick Black Soil fertility change under long-term fertilization (in Chinese). In: Xu M G, Liang G Q, Zhang F D. China Soil Fertility Change. Beijing: China Agricultural Science and Technology Press. 2006. 315–334

    Google Scholar 

  46. Meng L, Ding W X, Cai Z C, et al. Storage of soil organic C and soil respiration as affected by long-term quantitative fertilization (in Chinese). Adv Earth Sci, 2005, 20: 687–692

    Google Scholar 

  47. Cai Z C, Qin S W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma, 2006, 136: 708–715, 10.1016/j.geoderma.2006.05.008, 1:CAS:528:DC%2BD28Xhtlaktr%2FE

    CAS  Google Scholar 

  48. Huang S M, Bao D J. Study on distribution of nitrate-N in Chao Soil and reasonable application of N fertilizer under the crop rotation system of winter wheat and corn (in Chinese). Soil Environ Sci, 1999, 8: 271–273

    Google Scholar 

  49. Huang S M, Bao D J, Huangfu X R, et al. Loamy Chao Soil fertility change under long-term fertilization (in Chinese). In: Xu M G, Liang G Q, Zhang F D. China soil fertility change. Beijing: China Agricultural Science and Technology Press. 2006. 191–208

    Google Scholar 

  50. Wang B R, Xu M G, Wen S L. Effect of long time fertilizers application on soil characteristics and crop growth in Red Soil upland (in Chinese). J Soil Water Conserv, 2005, 19: 97–100

    Google Scholar 

  51. Wang B R, Xu M G, Wen S L. The effect of long term fertilizer application on phosphorus in Red Upland Soil (in Chinese). Chin Agrl Sci Bull, 2007, 23: 254–259

    Google Scholar 

  52. Fang K, Chen X M, Zhang J B, et al. Saturated hydraulic conductivity and its influential factors of typical farmland in Red Soil region (in Chinese). J Irrig Drain, 2008, 27: 67–69

    Google Scholar 

  53. Wang B R, Li J M, Zhang H M. Red Soil fertility change under long-term fertilization (in Chinese). In: Xu M G, Liang G Q, Zhang F D. China Soil Fertility Change. Beijing: China Agricultural Science and Technology Press. 2006. 19–46

    Google Scholar 

  54. Xu M G, Yu R, Wang B R. Labile organic matter and carbon management index in Red Soil under long-term fertilization (in Chinese). Acta Pedol Sinica, 2006, 43: 723–729

    Google Scholar 

  55. Jiang D, Hengsdijk H, Dai T B, et al. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China. Pedosphere, 2006, 16: 25–32, 10.1016/S1002-0160(06)60022-2

    Google Scholar 

  56. Zhang A J, Zhang M P. Study on regularity of growth and decline of soil organic matter under long-term fertilization for Yellow Fluvo aquic Soil (in Chinese). J Anhui Agr Univ, 2002, 29: 60–63

    Google Scholar 

  57. Zhang A J, Niu F X, Jiang R C, et al. Sandy loamy Chao Soil fertility change under long-term fertilization (in Chinese). In: Xu M G, Liang G Q, Zhang F D. China Soil Fertility Change. Beijing: China Agricultural Science and Technology Press. 2006. 171–190

    Google Scholar 

  58. Gao H J, Zhu P, Peng C, et al. Effects of organic soil fertility improving material in Black Soil on soil productivity and fertility (in Chinese). J Jilin Agr Univ, 2007, 29: 65–69, 1:CAS:528:DC%2BD2sXisVWqurk%3D

    CAS  Google Scholar 

  59. Peng C, Gao H J, Niu H H, et al. Long-term effects of fertilization and weather on corn yields in a clay loam soil in Northeast China (in Chinese). Journal of Maize Sciences, 2008, 16: 179–183

    Google Scholar 

  60. Peng C, Zhu P, Gao H J, et al. The report on long term monitoring fertility of Black Earth in controlled sites: I. the transform of OM and N nutrition in Black Earth (in Chinese). Jilin Agr Sci, 2004, 29: 29–33

    Google Scholar 

  61. Yang X M, Zhang X P, Fang H J, et al. Long-term effects of fertilization on soil organic carbon changes in continuous corn of Northeast China: RothC model simulations. Environ Manag, 2003, 32: 459–465, 10.1007/s00267-003-0016-3, 1:STN:280:DC%2BD2c%2Fps1ynuw%3D%3D

    CAS  Google Scholar 

  62. Guo S L, Wu J S, Dang T H. Effects of crop rotation and fertilization on aboveground biomass and soil organic C in semi-arid region (in Chinese). Sci Agr Sinica, 2008, 41: 744–751, 1:CAS:528:DC%2BD1cXlsV2rtbg%3D

    CAS  Google Scholar 

  63. Yang X Y, Sun B H, Gu Q Z, et al. Lou soil fertility change principle and use regulation under long-term fertilization (in Chinese). In: Xu M G, Liang G Q, Zhang F D. China soil fertility change. Beijing: China Agricultural Science and Technology Press. 2006. 279–300

    Google Scholar 

  64. Tang J W, Lin Z A, Xu J X, et al. Effect of organic manure and chemical fertilizer on soil nutrient (in Chinese). Soil Fertil Sci China, 2006, 6: 44–47

    Google Scholar 

  65. Wang X, Cai D, Hoogmoed W B, et al. Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I grain yields and nutrient use efficiencies. Nutr Cycl Agroecosyst, 2007, 79: 1–16, 10.1007/s10705-007-9113-7

    Google Scholar 

  66. Wang X, Hoogmoed W B, Cai D, et al. Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: II nutrient balances and soil fertility. Nutr Cycl Agroecosyst, 2007, 79: 17–34, 10.1007/s10705-006-9070-6

    Google Scholar 

  67. Du W, Tang L S, Li Y. Effect of fertilization on winter wheat yield in the oasis farmland (in Chinese). J Arid Land Res Environ, 2008, 22: 163–166

    Google Scholar 

  68. Liu Y, Tang L S, Li Y. The Effect of different fertilization treatments on soil nutrient and crop yield in oasis farmland (in Chinese). Agr Res Arid Areas, 2008, 3: 151–156

    Google Scholar 

  69. Wang G L, Duan J N, Li X L. Change of soil organic matter contents under a long-term experiment (in Chinese). Chin J Soil Sci, 2003, 34: 589–591, 1:CAS:528:DC%2BD2MXitlOmsg%3D%3D

    CAS  Google Scholar 

  70. Xie W, Hu H, Zhai J P, et al. Effect of different planting patterns of regular localized fertilization on crop output and soil fertility (in Chinese). J Anhui Agr Sci, 2005, 33: 1605–1608

    Google Scholar 

  71. Kubat J, Klir J, Pova D. The dry matter yields, nitrogen uptake, and the efficacy of nitrogen fertilisation in long-term field experiments in Prague. Plant Soil Environ, 2003, 49: 337–345

    Google Scholar 

  72. Li C, Frolking S, Crocker G J, et al. Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma, 1997, 81: 45–60, 10.1016/S0016-7061(97)00080-3

    Google Scholar 

  73. Šimon T. The influence of long-term organic and mineral fertilization on soil organic matter. Soil Water Res, 2008, 3: 41–51

    Google Scholar 

  74. Kubát J, Cerhanová D, Nováková J, et al. Total organic carbon and its composition in long-term field experiments in the Czech Republic. Arch Agron Soil Sci, 2006, 52: 495–505, 10.1080/03650340600968314, 1:CAS:528:DC%2BD28XhtlSms7%2FN

    Google Scholar 

  75. Kubát J, Lipavsky J. Steady state of the soil organic matter in the long-term field experiments. Plant Soil Environ, 2006, 52: 9–14

    Google Scholar 

  76. Bol R, Eriksen J, Smith P, et al. The natural abundance of 13C, 15N, 34S and 14C in archived (1923–2000) plant and soil samples from the Askov long-term experiments on animal manure and mineral fertilizer. Rapid Comm Mass Spectrom, 2005, 19: 3216–3226, 10.1002/rcm.2156, 1:CAS:528:DC%2BD2MXht1Ogtb%2FE

    CAS  Google Scholar 

  77. Bruun S, Christensen B T, Hansen E M, et al. Calibration and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments. Soil Biol Biochem, 2003, 35: 67–76, 10.1016/S0038-0717(02)00237-7, 1:CAS:528:DC%2BD3sXhvFGrtLY%3D

    CAS  Google Scholar 

  78. Szajdak L, Kuldkepp P, Leedu E, et al. Effect of different management on biochemical properties of organic matter in Fragi-Stagnic Albeluvisols. Arch Agron Soil Sci, 2006, 52: 127–137, 10.1080/03650340600604000, 1:CAS:528:DC%2BD28Xjt1Cktrs%3D

    CAS  Google Scholar 

  79. Teesalu T, Kuldkepp P, Toomsoo A, et al. Content of organic carbon and total nitrogen in Stagnic Albeluvisols depending on fertilization. Arch Agron Soil Sci, 2006, 52: 193–200, 10.1080/03650340600626904, 1:CAS:528:DC%2BD28Xjt1Cktr4%3D

    CAS  Google Scholar 

  80. Abdelhafid R, Houot S, Barriuso E. Dependence of atrazine degradation on C and N availability in adapted and non-adapted soils. Soil Biol Biochem, 2000, 32: 389–401, 10.1016/S0038-0717(99)00167-4, 1:CAS:528:DC%2BD3cXhs1Smt7k%3D

    CAS  Google Scholar 

  81. Houot S, Barriuso E, Bergheaud V. Modifications to atrazine degradation pathways in a loamy soil after addition of organic amendments. Soil Biol Biochem, 1998, 30: 2147–2157, 10.1016/S0038-0717(98)00098-4, 1:CAS:528:DyaK1cXmslentLc%3D

    CAS  Google Scholar 

  82. Houot S, Chaussod R. Impact of agricultural practices on the size and activity of the microbial biomass in a long-term field experiment. Biol Fertil Soils, 1995, 19: 309–316, 10.1007/BF00336100

    Google Scholar 

  83. Blair N, Faulkner R D, Till a R, et al. Long-term management impacts on soil C, N and physical fertility. Part II: Bad Lauchstadt static and extreme FYM experiments. Soil Till Res, 2006, 91: 39–47, 10.1016/j.still.2005.11.001

    Google Scholar 

  84. Bohme L, Bohme F. Soil microbiological and biochemical properties affected by plant growth and different long-term fertilisation. Eur J Soil Biol, 2006, 42: 1–12, 10.1016/j.ejsobi.2005.08.001, 1:CAS:528:DC%2BD28XisFOqu7g%3D

    Google Scholar 

  85. Merbach W, Garz J, Schliephake W, et al. The long-term fertilization experiments in Halle (Saale), Germany: introduction and survey. J Plant Nutr Soil Sci, 2000, 163: 629–638, 10.1002/1522-2624(200012)163:6<629::AID-JPLN629>3.0.CO;2-P, 1:CAS:528:DC%2BD3MXhtFGitg%3D%3D

    CAS  Google Scholar 

  86. Stumpe H, Garz J, Schliephake W, et al. Effects of humus content, farmyard manuring, and mineral-N fertilization on yields and soil properties in a long-term trial. J Plant Nutr Soil Sci, 2000, 163: 657–662, 10.1002/1522-2624(200012)163:6<657::AID-JPLN657>3.0.CO;2-L, 1:CAS:528:DC%2BD3MXhtFGitQ%3D%3D

    CAS  Google Scholar 

  87. Schmidt L, Warnstorff K, Doerfel H, et al. The influence of fertilization and rotation on soil organic matter and plant yields in the long-term Eternal Rye trial in Halle (Saale), Germany. J Plant Nutr Soil Sci, 2000, 163: 639–648, 10.1002/1522-2624(200012)163:6<639::AID-JPLN639>3.0.CO;2-L, 1:CAS:528:DC%2BD3MXhtFGitw%3D%3D

    CAS  Google Scholar 

  88. Ludwig B, Helfrich M, Flessa H. Modelling the long-term stability of carbon from maize in a silty soil. Plant Soil, 2005, 278: 315–325, 10.1007/s11104-005-8808-2, 1:CAS:528:DC%2BD2MXht1Knsb3P

    CAS  Google Scholar 

  89. Ellmer F, Peschke H, Koehn W, et al. Tillage and fertilizing effects on sandy soils. Review and selected results of long-term experiments at Humboldt-University Berlin. J Plant Nutr Soil Sci, 2000, 163: 267–272, 10.1002/1522-2624(200006)163:3<267::AID-JPLN267>3.0.CO;2-Z, 1:CAS:528:DC%2BD3cXks1WlsL4%3D

    CAS  Google Scholar 

  90. Mirschel W, Wenkel K O, Wegehenkel M, et al. Müncheberg field trial data set for agro-ecosystem model validation. In: Kersebaum C K, Hecker J-M, Mirschel W, eds. Modelling Water and Nutrient Dynamics in Soil-crop Systems. Dordrecht, Netherlands: Springer, 2007. 219–243, 10.1007/978-1-4020-4479-3_16

    Google Scholar 

  91. Post J, Habeck A, Hattermann F, et al. Evaluation of water and nutrient dynamics in soil-crop systems using the eco-hydrological catchment model SWIM. In: Kersebaum C K, Hecker J-M, Mirschel W, eds. Modelling Water and Nutrient Dynamics in Soil-crop Systems. Dordrecht, Netherlands: Springer, 2007. 129–146, 10.1007/978-1-4020-4479-3_10

    Google Scholar 

  92. Post J, Hattermann F F, Krysanova V, et al. Parameter and input data uncertainty estimation for the assessment of long-term soil organic carbon dynamics. Environ Model Software, 2008, 23: 125–138, 10.1016/j.envsoft.2007.05.010

    Google Scholar 

  93. Post J, Krysanova V, Suckow F, et al. Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso-to macro-scale river basins. Ecol Model, 2007, 206: 93–109, 10.1016/j.ecolmodel.2007.03.028

    Google Scholar 

  94. Rogasik J, Schroetter S, Funder U, et al. Long-term fertilizer experiments as a data base for calculating the carbon sink potential of arable soils. Arch Agron Soil Sci, 2004, 50: 11–19, 10.1080/03650340310001627559

    Google Scholar 

  95. Ellerbrock R H, Hohn A, Gerke H H. FT-IR studies on soil organic matter from long-term field experiments. In: Rees R M, Ball B C, Campbell C D, eds. Sustainable management of soil organic matter. Wallingford, UK: CABI Publishing, 2001. 34–41

    Google Scholar 

  96. Falloon P, Smith P. Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use Manage, 2002, 18: 101–111, 10.1111/j.1475-2743.2002.tb00227.x

    Google Scholar 

  97. Falloon P, Smith P. Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections. Soil Use Manage, 2003, 19: 265–269, 10.1111/j.1475-2743.2003.tb00313.x

    Google Scholar 

  98. Manna M C, Swarup A, Wanjari R H, et al. Long-term effects of NPK fertiliser and manure on soil fertility and a sorghum-wheat farming system. Aust J Exp Agr, 2007, 47: 700–711, 10.1071/EA05105

    Google Scholar 

  99. Manna M C, Swarup A, Wanjari R H, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Res, 2005, 93: 264–280, 10.1016/j.fcr.2004.10.006

    Google Scholar 

  100. Manna M C, Swarup A, Wanjari R H, et al. Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Till Res, 2007, 94: 397–409, 10.1016/j.still.2006.08.013

    Google Scholar 

  101. Hati K M, Swarup A, Dwivedi a K, et al. Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central India after 28 years of continuous cropping, fertilization and manuring. Agr Ecosyst Environ, 2007, 119: 127–134, 10.1016/j.agee.2006.06.017

    Google Scholar 

  102. Reddy K S, Singh M, Tripathi a K, et al. Changes in organic and inorganic sulfur fractions and S mineralisation in a Typic Haplustert after long-term cropping with different fertiliser and organic manure inputs. Aus J Soil Res, 2001, 39: 737–748, 10.1071/SR00020, 1:CAS:528:DC%2BD3MXmtVGqu7c%3D

    CAS  Google Scholar 

  103. Kundu S, Bhattacharyya R, Prakash V, et al. Carbon sequestration and relationship between carbon addition and storage under rainfed soybean-wheat rotation in a sandy loam soil of the Indian Himalayas. Soil Till Res, 2007, 92: 87–95, 10.1016/j.still.2006.01.009

    Google Scholar 

  104. Kundu S, Bhattacharyya R, Prakash V, et al. Long-term yield trend and sustainability of rainfed soybean-wheat system through farmyard manure application in a sandy loam soil of the Indian Himalayas. Biol Fertil Soils, 2007, 43: 271–280, 10.1007/s00374-006-0102-9

    Google Scholar 

  105. Prakash V, Bhattacharyya R, Selvakumar G, et al. Long-term effects of fertilization on some soil properties under rainfed soybean-wheat cropping in the Indian Himalayas. J Plant Nutr Soil Sci, 2007, 170: 224–233, 10.1002/jpln.200622032, 1:CAS:528:DC%2BD2sXlsVagsrc%3D

    CAS  Google Scholar 

  106. Saha S, Prakash V, Kundu S, et al. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean-wheat system in NW Himalaya. Eur J Soil Biol, 2008, 44: 309–315, 10.1016/j.ejsobi.2008.02.004, 1:CAS:528:DC%2BD1cXnvVGqsL0%3D

    CAS  Google Scholar 

  107. Bhattacharyya R, Kundu S, Prakash V, et al. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean-wheat system of the Indian Himalayas. Eur J Agron, 2008, 28: 33–46, 10.1016/j.eja.2007.04.006, 1:CAS:528:DC%2BD2sXht1KjsL7O

    CAS  Google Scholar 

  108. Bhattacharyya R, Prakash V, Kundu S, et al. Potassium balance as influenced by farmyard manure application under continuous soybean-wheat cropping system in a Typic Haplaquept. Geoderma, 2006, 137: 155–160, 10.1016/j.geoderma.2006.08.006, 1:CAS:528:DC%2BD28Xhtlals7bL

    CAS  Google Scholar 

  109. Bhattacharyya R, Prakash V, Kundu S, et al. Effect of long-term manuring on soil organic carbon, bulk density and water retention characteristics under soybean-wheat cropping sequence in North-Western Himalayas. J Indian Soc Soil Sci, 2004, 52: 238–242

    Google Scholar 

  110. Hati K M, Swarup A, Singh D, et al. Long-term continuous cropping, fertilisation, and manuring effects on physical properties and organic carbon content of a sandy loam soil. Aust J Soil Res, 2006, 44: 487–495, 10.1071/SR05156

    Google Scholar 

  111. Kanchikerimath M, Singh D. Soil organic matter and biological properties after 26 years of maize-wheat-cowpea cropping as affected by manure and fertilization in a Cambisol in semiarid region of India. Agr Ecosyst Environ, 2001, 86: 155–162, 10.1016/S0167-8809(00)00280-2, 1:CAS:528:DC%2BD3MXksVynu7Y%3D

    CAS  Google Scholar 

  112. Mandal A, Patra a K, Singh D, et al. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Biores Tech, 2007, 98: 3585–3592, 10.1016/j.biortech.2006.11.027, 1:CAS:528:DC%2BD2sXpvVamtLs%3D

    CAS  Google Scholar 

  113. Masto R E, Chhonkar P K, Singh D, et al. Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agr Ecosyst Environ, 2007, 118: 130–142, 10.1016/j.agee.2006.05.008, 1:CAS:528:DC%2BD28Xht1CnsLrM

    CAS  Google Scholar 

  114. Masto R E, Chhonkar P K, Singh D, et al. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environ Monit Assess, 2008, 136: 419–435, 17457684, 10.1007/s10661-007-9697-z, 1:CAS:528:DC%2BD2sXhtlKrsLjO

    PubMed  CAS  Google Scholar 

  115. Masto R E, Chhonkar P K, Singh D, et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biol Biochem, 2006, 38: 1577–1582, 10.1016/j.soilbio.2005.11.012, 1:CAS:528:DC%2BD28Xnt1ylt7k%3D

    CAS  Google Scholar 

  116. Lugato E, Paustian K, Giardini L. Modelling soil organic carbon dynamics in two long-term experiments of north-eastern Italy. Agr Ecosyst Environ, 2007, 120: 423–432, 10.1016/j.agee.2006.11.006, 1:CAS:528:DC%2BD2sXhs1Cjtb8%3D

    CAS  Google Scholar 

  117. Morari F, Lugato E, Berti A, et al. Long term effect of recommended management practices (RMPs) on soil carbon changes and sequestration in north eastern Italy. Soil Use Manage, 2006, 22: 71–81, 10.1111/j.1475-2743.2005.00006.x

    Google Scholar 

  118. Lugato E, Berti A, Giardini L. Soil organic carbon (SOC) dynamics with and without residue incorporation in relation to different nitrogen fertilisation rates. Geoderma, 2006, 135: 315–321, 10.1016/j.geoderma.2006.01.012, 1:CAS:528:DC%2BD28XhtVykt7vO

    CAS  Google Scholar 

  119. Triberti L, Nastri A, Giordani G, et al. Can mineral and organic fertilization help sequestrate carbon dioxide in cropland? Eur J Agron, 2008, 29: 13–20, 10.1016/j.eja.2008.01.009, 1:CAS:528:DC%2BD1cXmtVSls78%3D

    CAS  Google Scholar 

  120. Mazzoncini M, Di Bene C, Coli A, et al. Rainfed wheat and soybean productivity in a long-term tillage experiment in central Italy. Agron J, 2008, 100: 1418–1429, 10.2134/agronj2007.0173

    Google Scholar 

  121. Mazzoncini M, Di Bene C, Coli A, et al., Long-term tillage and nitrogen fertilization effects on maize yield and soil quality under rainfed Mediterranean conditions: a critical perspective. In: Christensen B T, Petersen J, Schacht M. Long-term field experiments-a unique research platform. Proceedings of NJF Seminar 407. Denmark. 2008: 13–16

  122. Kamoni P T, Gicheru P T, Wokabi S M, et al. Evaluation of two soil carbon models using two Kenyan long term experimental datasets. Agr Ecosyst Environ, 2007, 122: 95–104, 10.1016/j.agee.2007.01.011, 1:CAS:528:DC%2BD2sXjvFamt78%3D

    CAS  Google Scholar 

  123. Kapkiyai J J, Karanja N K, Qureshi J N, et al. Soil organic matter and nutrient dynamics in a Kenyan nitisol under long-term fertilizer and organic input management. Soil Biol Biochem, 1999, 31: 1773–1782, 10.1016/S0038-0717(99)00088-7, 1:CAS:528:DyaK1MXmslGjt7Y%3D

    CAS  Google Scholar 

  124. Kihanda F M, Warren G P, Micheni a N. Effect of manure application on crop yield and soil chemical properties in a long-term field trial of semi-arid Kenya. Nutr Cycl Agroecosyst, 2006, 76: 341–354, 10.1007/s10705-006-9024-z

    Google Scholar 

  125. Booltink H W G, Van Alphen B J, Batchelor W D, et al. Tools for optimizing management of spatially-variable fields. Agr Syst, 2001, 70: 445–476, 10.1016/S0308-521X(01)00055-5

    Google Scholar 

  126. Booltink H W G, Verhagen J. Using decision support systems to optimize barley management on spatial variable soil. In: Kropff M J, Teng P S, Aggarwal P K, eds. System Approaches for Sustainable Agricultural Development: Applications of Systems Approaches at the Field Level. Dordrecht, Netherlands: Kluwer Academic Publishers, 1998. 219–233

    Google Scholar 

  127. Verhagen A, Booltink H W G, Bouma J. Site-specific management: balancing production and environmental requirements at farm level. Agr Syst, 1995, 49: 369–384, 10.1016/0308-521X(95)00031-Y

    Google Scholar 

  128. Zwart K. Fate of C and N pools-experience from short and long term compost experiments. In: Amlinger F, Nortcliff S, Weinfurtner K, eds. Applying Compost-Benefits and Needs. Proc of a seminar 22–23 November 2001. Brussels, Vienna. 2003. 77–86

  129. Cuvardic M, Tvertnes S, Krogstad T, et al. Long-term effects of crop rotation and different fertilization systems on soil fertility and productivity. Acta Agr Scand Sec B-Plant Soil Sci, 2004, 54: 193–201

    Google Scholar 

  130. Petersen J, Mattsson L, Riley H, et al., Long continued agricultural soil experiments: a Nordic research platform (catalogue report: NO-5). 2008. Available from:www.planteinfo.dk/Nordic-LTE

  131. Riley H. Long-term fertilizer trials on loam soil at Moystad, south-eastern Norway: crop yields, nutrient balances and soil chemical analyses from 1983 to 2003. Acta Agr Scand Sec B-Plant Soil Sci, 2007, 57: 140–154, 1:CAS:528:DC%2BD2sXmslKgsL8%3D

    CAS  Google Scholar 

  132. Singh B R, Lal R. The potential of soil carbon sequestration through improved management practices in Norway. Environ Develop Sust, 2005, 7: 161–184, 10.1007/s10668-003-6372-6

    Google Scholar 

  133. Shevtsova L, Romanenkov V, Sirotenko O, et al. Effect of natural and agricultural factors on long-term soil organic matter dynamics in arable soddy-podzolic soils-modeling and observation. Geoderma, 2003, 116: 165–189, 10.1016/S0016-7061(03)00100-9, 1:CAS:528:DC%2BD3sXltF2isb4%3D

    CAS  Google Scholar 

  134. Katterer T, Andrén O, Jansson P E. Pedotransfer functions for estimating plant available water and bulk density in Swedish agricultural soils. Acta Agr Scand Sec B-Plant Soil Sci, 2006, 56: 263–276

    Google Scholar 

  135. Kirchmann H, Bergstrom L, Katterer T, et al. Comparison of long-term organic and conventional crop-livestock system on a previously nutrient-depleted soil in Swedden. Agron J, 2007, 99: 960–972, 10.2134/agronj2006.0061, 1:CAS:528:DC%2BD2sXovFajtL4%3D

    CAS  Google Scholar 

  136. Thord Karlsson L O, Andrén O, Katterer T, et al. Management effects on topsoil carbon and nitrogen in Swedish long-term field experi ments-budget calculations with and without humus pool dynamics. Eur J Agron, 2003, 20: 137–147, 10.1016/S1161-0301(03)00083-2, 1:CAS:528:DC%2BD3sXpt1Sgur4%3D

    CAS  Google Scholar 

  137. Gerzabek M H, Pichlmayer F, Kirchmann H, et al. The response of soil organic matter to manure amendments in a long-term experiment at Ultuna, Sweden. Eur J Soil Sci, 1997, 48: 273–282, 10.1111/j.1365-2389.1997.tb00547.x

    Google Scholar 

  138. Carlgren K, Mattsson L. Swedish soil fertility experiments. Acta Agr Scand Sec B-Plant Soil Sci, 2001, 51: 49–76

    Google Scholar 

  139. Kirchmann H, Eriksson J, Snäll S. Properties and classification of soils of the Swedish long-term fertility experiments: IV. sites at Ekebo and Fjardingslov. Acta Agr Scand B, 1999, 49: 25–38

    Google Scholar 

  140. Zagal E. Carbon distribution and nitrogen partitioning in a soil-plant system with barley (Hordeum vulgare L.), ryegrass (Lolium perenne) and rape (Brassica napus L.) grown in a 14CO2-atmosphere. Plant Soil, 1994, 166: 63–74, 10.1007/BF02185482, 1:CAS:528:DyaK2MXjsFKmu7w%3D

    CAS  Google Scholar 

  141. Fließbach A, Oberholzer H R, Gunst L, et al. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agr Ecosyst Environ, 2007, 118: 273–284, 10.1016/j.agee.2006.05.022

    Google Scholar 

  142. Anken T, Weisskopf P, Zihlmann U, et al. Long-term tillage system effects under moist cool conditions in Switzerland. Soil Till Res, 2004, 78: 171–183, 10.1016/j.still.2004.02.005

    Google Scholar 

  143. Hermle S, Anken T, Leifeld J, et al. The effect of the tillage system on soil organic carbon content under moist, cold-temperate conditions. Soil Till Res, 2007, 98: 94–105, 10.1016/j.still.2007.10.010

    Google Scholar 

  144. Shirato Y, Paisancharoen K, Sangtong P, et al. Testing the Rothamsted Carbon Model against data from long-term experiments on upland soils in Thailand. Eur J Soil Sci, 2005, 56: 179–188, 10.1111/j.1365-2389.2004.00659.x, 1:CAS:528:DC%2BD2MXjtFegtLk%3D

    CAS  Google Scholar 

  145. Petersen B M, Berntsen J, Hansen S, et al. CN-SIM-a model for the turnover of soil organic matter. I. Long-term carbon and radiocarbon development. Soil Biol Biochem, 2005, 37: 359–374, 10.1016/j.soilbio.2004.08.006, 1:CAS:528:DC%2BD2cXhtVahu7%2FF

    CAS  Google Scholar 

  146. Jenkinson D S, Poulton P R, Bryant C. The turnover of organic carbon in subsoils. Part 1. Natural and bomb radiocarbon in soil profiles from the Rothamsted long-term field experiments. Eur J Soil Sci, 2008, 59: 391–399, 10.1111/j.1365-2389.2008.01025.x, 1:CAS:528:DC%2BD1cXkslyrsrY%3D

    CAS  Google Scholar 

  147. Powlson D S, Smith P, Coleman K, et al. A European network of long-term sites for studies on soil organic matter. Soil Till Res, 1998, 47: 263–274, 10.1016/S0167-1987(98)00115-9

    Google Scholar 

  148. Doane T A, Horwath W R. Annual dynamics of soil organic matter in the context of long-term trends. Glob Biogeochem Cyc, 2004, 18: GB3008, 10.1029/2004GB002252, 1:CAS:528:DC%2BD2cXpvVCmu7Y%3D

    Google Scholar 

  149. Rasmussen P E, Albrecht S L, Smiley R W. Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil Till Res, 1998, 47: 197–205, 10.1016/S0167-1987(98)00106-8

    Google Scholar 

  150. Rasmussen P E, Smiley R W. Soil carbon and nitrogen change in long-term agricultural experiments at Pendleton, Oregon. In: Paul E A, Paustian K, Elliott E T, et al. eds. Soil Organic Matter in Temperate Agroecosystems: Long-term Experiments in North America. Florida: Lewis Publishers, CRC Press. 1997. 353–360

    Google Scholar 

  151. Williams J D. Effects of long-term winter wheat, summer fallow residue and nutrient management on field hydrology for a silt loam in north-central Oregon. Soil Till Res, 2004, 75: 109–119, 10.1016/j.still.2003.08.010

    Google Scholar 

  152. Wuest S B, Caesar-Tonthat T C, Wright S F, et al. Organic matter addition, N, and residue burning effects on infiltration, biological, and physical properties of an intensively tilled silt-loam soil. Soil Till Res, 2005, 84: 154–167, 10.1016/j.still.2004.11.008

    Google Scholar 

  153. Huggins D R, Buyanovsky G A, Wagner G H, et al. Soil organic C in the tallgrass prairie-derived region of the corn belt: effects of long-term crop management. Soil Till Res, 1998, 47: 219–234, 10.1016/S0167-1987(98)00108-1

    Google Scholar 

  154. Odell R T, Walker W M, Boone L V, et al. The Morrow Plots: A century of Learning. Urbana-Champaign, Illinois: University of Illinois at Urbana-Champaign, 1984. 0–22

    Google Scholar 

  155. Buyanovsky G A, Brown J R, Wagner G H. Sanborn field: effect of 100 years of cropping on soil parameters influencing productivity. In: Paul E A, Paustian K, Elliott E T, et al. Soil Organic Matter in Temperate Agroecosystems: Long-term Experiments in North America. Florida: Lewis Publishers, CRC Press. 1997. 205–225

    Google Scholar 

  156. Davis R L, Patton J J, Teal R K, et al. Nitrogen balance in the Magruder plots following 109 years in continuous winter wheat. J Plant Nutr, 2003, 26: 1561–1580, 10.1081/PLN-120022364, 1:CAS:528:DC%2BD3sXlsV2qsrk%3D

    CAS  Google Scholar 

  157. Girma K, Holtz S L, Arnall D B, et al. The Magruder plots: untangling the puzzle. Agron J, 2007, 99: 1191–1198, 10.2134/agronj2007.0008, 1:CAS:528:DC%2BD2sXhtFyis7rI

    CAS  Google Scholar 

  158. Mullen R W, Freeman K W, Johnson G V, et al. The Magruder plots-long-term wheat fertility research. Better Crops, 2001, 85: 6–8

    Google Scholar 

  159. Clapp C E, Allmaras R R, Layese M F, et al. Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil Till Res, 2000, 55: 127–142, 10.1016/S0167-1987(00)00110-0

    Google Scholar 

  160. Hendrix P F, Franzluebbers A J, Mccracken D V. Management effects on C accumulation and loss in soils of the southern Appalachian Piedmont of Georgia. Soil Till Res, 1998, 47: 245–251, 10.1016/S0167-1987(98)00113-5

    Google Scholar 

  161. Hendrix P F, Paul E A, Paustian K, et al. Long-term patterns of plant production and soil carbon dynamics in a Georgia Piedmont agroecosystem. In: Paul E A, Paustian K, Elliott E T, et al eds. Soil Organic Matter in Temperate Agroecosystems: Long-term Experiments in North America. Florida: Lewis Publishers, CRC Press. 1997: 235–245

    Google Scholar 

  162. Collins H P, Elliott E T, Paustian K, et al. Soil carbon pools and fluxes in long-term corn belt agroecosystems. Soil Biology and Biochemistry, 2000, 32: 157–168, 10.1016/S0038-0717(99)00136-4, 1:CAS:528:DC%2BD3cXhsVyiu7c%3D

    CAS  Google Scholar 

  163. Paul E A, Collins H P, Leavitt S W. Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma, 2001, 104: 239–256, 10.1016/S0016-7061(01)00083-0, 1:CAS:528:DC%2BD3MXnsFGht7c%3D

    CAS  Google Scholar 

  164. Vanotti M B, Bundy L G, Peterson A E. Nitrogen fertilizer and legume-cereal rotation effects on soil productivity and organic matter dynamics in Wisconsin. In: Paul E A, Paustian K, Elliott E T, et al., eds. Soil organic matter in temperate agroecosystems: long-term experiments in North America. Florida: Lewis Publishers, CRC Press. 1997: 105–120

    Google Scholar 

  165. Vanotti M V B, Bundy L G. Soil organic matter dynamics in the North American Corn Belt: the Arlington Plots. In: Powlson D S, Smith P and Smith J U. Evaluation of soil organic models using existing long-term data sets. Berlin: Springer. 1996: 409–418

    Google Scholar 

  166. He X, Izaurralde R C, Vanotti M B, et al. Simulating long-term and residual effects of nitrogen fertilization on corn yields, soil carbon sequestration, and soil nitrogen dynamics. Journal of Environmental Quality, 2006, 35: 1608–1619, 16825481, 10.2134/jeq2005.0259, 1:CAS:528:DC%2BD28Xns1Cku7s%3D

    PubMed  CAS  Google Scholar 

  167. Christenson D R. Soil organic matter in sugar beet and dry bean cropping systems in Michigan. In: Paul E A, Paustian K, Elliott E T, et al., eds. Soil organic matter in temperate agroecosystems: long-term experiments in North America. Florida: Lewis Publishers, CRC Press. 1997: 151–160

    Google Scholar 

  168. Dick W A, Blevins R L, Frye W W, et al. Impacts of agricultural management practices on C sequestration in forest-derived soils of the eastern corn Belt. Soil Till Res, 1998, 47: 235–244, 10.1016/S0167-1987(98)00112-3

    Google Scholar 

  169. Vitosh M L, Lucas R E, Silva G H. Long-term effects of fertilizer and manure on corn yield, soil carbon, and other soil chemical properties in Michigan. In: Paul E A, Paustian K, Elliott E T, et al. Soil organic matter in temperate agroecosystems: long-term experiments in North America. Florida: Lewis Publishers, CRC Press. 1997: 129–140

    Google Scholar 

  170. Lesoing G W, Doran J W. Crop rotation, manure, and agricultural chemical effects on dryland crop yield and SOM over 16 years in eastern Nebraska. In: Paul E A, Paustian K, Elliott E T, et al., eds. Soil organic matter in temperate agroecosystems: long-term experiments in North America. Florida: Lewis Publishers, CRC Press. 1997: 197–204

    Google Scholar 

  171. Hao X, Kravchenko a N. Management practice effects on surface soil total carbon: differences along a textural gradient. Agron J, 2007, 99: 18–26, 10.2134/agronj2005.0352, 1:CAS:528:DC%2BD2sXhs12jurY%3D

    CAS  Google Scholar 

  172. Kravchenko A N, Robertson G P, Hao X, et al. Management practice effects on surface total carbon: differences in spatial variability patterns. Agron J, 2006, 98: 1559–1568, 10.2134/agronj2006.0066, 1:CAS:528:DC%2BD28XhtlajsbfE

    CAS  Google Scholar 

  173. Sanchez J E, Harwood R R, Willson T C, et al. Managing soil carbon and nitrogen for productivity and environmental quality. Agron J, 2004, 96: 769–775, 10.2134/agronj2004.0769, 1:CAS:528:DC%2BD2cXlsVaju70%3D

    CAS  Google Scholar 

  174. Six J, Elliott E T, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J, 1999, 63: 1350–1358, 10.2136/sssaj1999.6351350x, 1:CAS:528:DyaK1MXns12lsb0%3D

    CAS  Google Scholar 

  175. Kettler T A, Lyon D J, Doran J W, et al. Soil quality assessment after weed-control tillage in a no-till wheat-fallow cropping system. Soil Sci Soc Am J, 2000, 64: 339–346, 10.2136/sssaj2000.641339x, 1:CAS:528:DC%2BD3cXmslyhtb4%3D

    CAS  Google Scholar 

  176. Lyon D J, Monz C A, Brown R E, et al. Soil organic matter changes over two decades of winter wheat-fallow cropping in western Nebraska. In: Paul E A, Paustian K, Elliott E T, et al., eds. Soil organic matter in temperate agroecosystems: long-term experiments in North America. Florida: Lewis Publishers, CRC Press. 1997: 343–352

    Google Scholar 

  177. Lyon D J, Stroup W W, Brown R E. Crop production and soil water storage in long-term winter wheat-fallow tillage experiments. Soil Till Res, 1998, 49: 19–27, 10.1016/S0167-1987(98)00151-2

    Google Scholar 

  178. Peterson G A, Halvorson A D, Havlin J L, et al. Reduced tillage and increasing cropping intensity in the Great Plains conserves soil C. Soil Till Res, 1998, 47: 207–218, 10.1016/S0167-1987(98)00107-X

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z., Huang, Y. Quantification of soil organic carbon sequestration potential in cropland: A model approach. Sci. China Life Sci. 53, 868–884 (2010). https://doi.org/10.1007/s11427-010-4023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4023-3

Keywords

Navigation