Skip to main content
Log in

TRAF-mediated regulation of immune and inflammatory responses

  • Special Topic
  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The tumor necrosis factor (TNF) receptor-associated factor (TRAF) family consists of six mammalian members, and is shown to participate in signal transduction of a large number of receptor families including TNF receptor family (TNFR) and Toll-like receptors-interleukin-1 receptors (TLR-IL-1R) family. Upon receptor activation, TRAFs are directly or indirectly recruited to the intracellular domains of these receptors. They subsequently engage other signaling proteins to activate inhibitor of κB kinase (IKK) complex, TRAF family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1) and inducible I κB kinase (IKK-i) (also known as IKKɛ), ultimately leading to activation of transcription factors such as NF-κB and interferon-regulatory factor (IRF) to induce immune and inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rothe M, Wong S C, Henzel W J, et al. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell, 1994, 78: 681–692 10.1016/0092-8674(94)90532-0, 1:CAS:528:DyaK2cXmvFGgtrg%3D, 8069916

    Article  PubMed  CAS  Google Scholar 

  2. Hu H M, O’Rourke K, Boguski M S, et al. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J Biol Chem, 1994, 269: 30069–30072 1:CAS:528:DyaK2cXmvFyltrs%3D, 7527023

    PubMed  CAS  Google Scholar 

  3. Cheng G, Cleary A M, Ye Z S, et al. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science, 1995, 267: 1494–1498 10.1126/science.7533327, 1:CAS:528:DyaK2MXktlCltLo%3D, 7533327

    Article  PubMed  CAS  Google Scholar 

  4. Sato T, Irie S, Reed J C. A novel member of the TRAF family of putative signal transducing proteins binds to the cytosolic domain of CD40. FEBS Lett, 1995, 358: 113–118 10.1016/0014-5793(94)01406-Q, 1:CAS:528:DyaK2MXjtlOmtb0%3D, 7530216

    Article  PubMed  CAS  Google Scholar 

  5. Bradley J R, Pober J S. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene, 2001, 20: 6482–6491 10.1038/sj.onc.1204788, 1:CAS:528:DC%2BD3MXnvVegsb0%3D, 11607847

    Article  PubMed  CAS  Google Scholar 

  6. Chung J Y, Park Y C, Ye H, et al. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sc, 2002, 115: 679–688 1:CAS:528:DC%2BD38Xit1GisL4%3D

    CAS  Google Scholar 

  7. Pineda G, Ea C K, Chen Z J. Ubiquitination and TRAF signaling. Adv Exp Med Biol, 2007, 597: 80–92 10.1007/978-0-387-70630-6_7, 17633019

    Article  PubMed  Google Scholar 

  8. Bishop G A. The multifaceted roles of TRAFS in the regulation of B-cell function. Na. Rev Immunol, 2004, 4: 775–786 10.1038/nri1462, 1:CAS:528:DC%2BD2cXotVSlsb8%3D

    Article  CAS  Google Scholar 

  9. Park Y C, Burkitt V, Villa A R, et al. Structural basis for self-association and receptor recognition of human TRAF2. Nature, 1999, 398: 533–538 10.1038/19110, 1:CAS:528:DyaK1MXisFGqtbs%3D, 10206649

    Article  PubMed  CAS  Google Scholar 

  10. Arch R H, Thompson C B. 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB. Mol Cell Biol, 1998, 18: 558–565 1:CAS:528:DyaK1cXjtFSjug%3D%3D, 9418902

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. McWhirter S M, Pullen S S, Holton J M, et al. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc Natl Acad Sci USA, 1999, 96: 8408–8413 10.1073/pnas.96.15.8408, 1:CAS:528:DyaK1MXkslOks7c%3D, 10411888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ni C Z, Welsh K, Zheng J, et al. Crystallization and preliminary X-ray analysis of the TRAF domain of TRAF3. Acta Crystallogr D, 2002, 58: 1340–1342 10.1107/S0907444902008958, 12136149

    Article  PubMed  Google Scholar 

  13. Song Y J, Izumi K M, Shinners N P, et al. IRF7 activation by Epstein-Barr virus latent membrane protein 1 requires localization at activation sites and TRAF6, but not TRAF2 or TRAF3. Proc Natl Acad Sci USA, 2008, 105: 18448–18453 10.1073/pnas.0809933105, 1:CAS:528:DC%2BD1cXhsVOqt7%2FM, 19017798

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Li C, Ni C Z, Havert M L, et al. Downstream regulator TANK binds to the CD40 recognition site on TRAF3. Structure, 2002, 10: 403–411 10.1016/S0969-2126(02)00733-5, 1:CAS:528:DC%2BD38XhvVCgu7s%3D, 12005438

    Article  PubMed  CAS  Google Scholar 

  15. Ni C Z, Oganesyan G, Welsh K, et al. Key molecular contacts promote recognition of the BAFF receptor by TNF receptor-associated factor 3: implications for intracellular signaling regulation. J Immunol, 2004, 173: 7394–7400 1:CAS:528:DC%2BD2cXhtVCqur3P, 15585864

    Article  PubMed  CAS  Google Scholar 

  16. Xu Z, Nie P, Sun B, et al. 2007 Molecular identification and expression analysis of tumor necrosis factor receptor-associated factor 2 in grass carp Ctenopharyngodon idella. Acta Biochim Biophys Sin, 2007, 39: 857–868 10.1111/j.1745-7270.2007.00355.x, 1:CAS:528:DC%2BD2sXhsVygsbnJ, 17989877

    Article  PubMed  CAS  Google Scholar 

  17. Ye H, Arron J R, Lamothe B, et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature, 2002, 418: 443–447 10.1038/nature00888, 1:CAS:528:DC%2BD38XlsFajsbc%3D, 12140561

    Article  PubMed  CAS  Google Scholar 

  18. Yin Q, Lin S C, Lamothe B, et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol, 2009, 16: 658–697 10.1038/nsmb.1605, 1:CAS:528:DC%2BD1MXmtlars7g%3D, 19465916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Deng L, Wang C, Spencer E, et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 2000, 103: 351–361 10.1016/S0092-8674(00)00126-4, 1:CAS:528:DC%2BD3cXns1Clt7k%3D, 11057907

    Article  PubMed  CAS  Google Scholar 

  20. Shi C S, Kehrl J H. Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem, 2003, 278: 15429–15434 10.1074/jbc.M211796200, 1:CAS:528:DC%2BD3sXjtVClt7k%3D, 12591926

    Article  PubMed  CAS  Google Scholar 

  21. Hostager B S, Haxhinasto S A, Rowland S L, et al. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem, 2003, 278: 45382–45390 10.1074/jbc.M306708200, 1:CAS:528:DC%2BD3sXosl2jtro%3D, 12958312

    Article  PubMed  CAS  Google Scholar 

  22. Xu Z, Devlin K I, Ford M G, et al. Structure and interactions of the helical and U-box domains of CHIP, the C terminus of HSP70 interacting protein. Biochemistry, 2006, 45: 4749–4759 10.1021/bi0601508, 1:CAS:528:DC%2BD28Xis1KhsL8%3D, 16605243

    Article  PubMed  CAS  Google Scholar 

  23. Zhang M, Windheim M, Roe S M, et al. Chaperoned ubiquitylation—crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell, 2005, 20: 525–538 10.1016/j.molcel.2005.09.023, 1:CAS:528:DC%2BD2MXht12msr%2FF, 16307917

    Article  PubMed  CAS  Google Scholar 

  24. Brown K D, Hostager B S, Bishop G A. Regulation of TRAF2 signaling by self-induced degradation. J Biol Chem, 2002, 277: 19433–19438 10.1074/jbc.M111522200, 1:CAS:528:DC%2BD38XksVWltbc%3D, 11909853

    Article  PubMed  CAS  Google Scholar 

  25. Hayden M S, Ghosh S. Shared principles in NF-kappaB signaling. Cell, 2008, 132: 344–362 10.1016/j.cell.2008.01.020, 1:CAS:528:DC%2BD1cXivVahtbY%3D, 18267068

    Article  PubMed  CAS  Google Scholar 

  26. Chen G, Goeddel D V. TNF-R1 signaling: a beautiful pathway. Science, 2002, 296: 1634–1635 10.1126/science.1071924, 1:CAS:528:DC%2BD38XktlChtrg%3D, 12040173

    Article  PubMed  CAS  Google Scholar 

  27. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 2003, 114, 181-190

    Google Scholar 

  28. Ea C K, Deng L, Xia Z P, et al. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell, 2006, 22: 245–257 10.1016/j.molcel.2006.03.026, 1:CAS:528:DC%2BD28Xkt1Gmtb8%3D, 16603398

    Article  PubMed  CAS  Google Scholar 

  29. Wu C J, Conze D B, Li T, et al. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol, 2006, 8: 398–406 10.1038/ncb1384, 1:CAS:528:DC%2BD28Xjt12qs7o%3D, 16547522

    Article  PubMed  CAS  Google Scholar 

  30. Kanayama A, Seth R B, Sun L, et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell, 2004, 15: 535–548 10.1016/j.molcel.2004.08.008, 1:CAS:528:DC%2BD2cXns1ynurY%3D, 15327770

    Article  PubMed  CAS  Google Scholar 

  31. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol, 2000, 18: 621–663 10.1146/annurev.immunol.18.1.621, 1:CAS:528:DC%2BD3cXjs1Gmtro%3D, 10837071

    Article  PubMed  CAS  Google Scholar 

  32. Lee T H, Shank J, Cusson N, et al. The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem, 2004: 279, 33185–33191 10.1074/jbc.M404206200, 1:CAS:528:DC%2BD2cXmtFOisb4%3D, 15175328

    Article  PubMed  CAS  Google Scholar 

  33. Bertrand M J, Milutinovic S, Dickson K M, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell, 2008, 30: 689–700 10.1016/j.molcel.2008.05.014, 1:CAS:528:DC%2BD1cXnvFWnt74%3D, 18570872

    Article  PubMed  CAS  Google Scholar 

  34. Vince J E, Pantaki D, Feltham R, et al. TRAF2 must bind to cIAPs for TNF to efficiently activate NF-{kappa}B and to prevent TNF-induced apoptosis. J Biol Chem, 2009, 284: 35906–35915 10.1074/jbc.M109.072256, 1:CAS:528:DC%2BD1MXhsFCqu7%2FI, 19815541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Pomerantz J L, Baltimore D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. Embo J, 2009, 18: 6694–6704 10.1093/emboj/18.23.6694

    Article  Google Scholar 

  36. Bonnard M, Mirtsos C, Suzuki S, et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. Embo J, 2000, 19: 4976–4985 10.1093/emboj/19.18.4976, 1:CAS:528:DC%2BD3cXntVartL0%3D, 10990461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Ramakrishnan P, Wang W, Wallach D. Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity, 2004, 21: 477–489 10.1016/j.immuni.2004.08.009, 1:CAS:528:DC%2BD2cXpvVygt7Y%3D, 15485626

    Article  PubMed  CAS  Google Scholar 

  38. Bishop G A. The multifaceted roles of TRAFs in the regulation of B-cell function. Nat Rev Immunol, 2004, 4: 775–786 10.1038/nri1462, 1:CAS:528:DC%2BD2cXotVSlsb8%3D, 15459669

    Article  PubMed  CAS  Google Scholar 

  39. Hsing Y, Hostager B S, Bishop G A. Characterization of CD40 signaling determinants regulating nuclear factor-kappa B activation in B lymphocytes. J Immunol, 1997, 159: 4898–4906 1:CAS:528:DyaK2sXntlKlsrk%3D, 9366415

    PubMed  CAS  Google Scholar 

  40. Pullen S S, Dang T T, Crute J J, et al. CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of downstream pathways by distinct TRAFs. J Biol Chem, 1999, 274: 14246–14254 10.1074/jbc.274.20.14246, 1:CAS:528:DyaK1MXjsFWqtr8%3D, 10318845

    Article  PubMed  CAS  Google Scholar 

  41. Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med, 2007, 13: 460–469 10.1016/j.molmed.2007.09.002, 1:CAS:528:DC%2BD2sXhtlajsbfI, 18029230

    Article  PubMed  CAS  Google Scholar 

  42. Kopp E, Medzhitov R. Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol, 2003, 15: 396–401 10.1016/S0952-7915(03)00080-3, 1:CAS:528:DC%2BD3sXlvFymtbY%3D, 12900270

    Article  PubMed  CAS  Google Scholar 

  43. Cao Z, Xiong J, Takeuchi M, et al. TRAF6 is a signal transducer for interleukin-1. Nature, 1996, 383: 443–446 10.1038/383443a0, 1:CAS:528:DyaK28Xmt1ykur0%3D, 8837778

    Article  PubMed  CAS  Google Scholar 

  44. Takatsuna H, Kato H, Gohda J, et al. Identification of TIFA as an adapter protein that links tumor necrosis factor receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-associated kinase-1 (IRAK-1) in IL-1 receptor signaling. J Biol Chem, 2003, 278, 12144–12150 10.1074/jbc.M300720200, 1:CAS:528:DC%2BD3sXisVOnsb8%3D, 12566447

    Article  PubMed  CAS  Google Scholar 

  45. Conze D B, Wu C J, Thomas J A, et al. Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation. Mol Cell Biol, 2008, 28: 3538–3547 10.1128/MCB.02098-07, 1:CAS:528:DC%2BD1cXlvFeqsL0%3D, 18347055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Qian Y, Commane M, Ninomiya-Tsuji J, et al. IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation of NFkappa B. J Biol Chem, 2001, 276: 41661–41667 10.1074/jbc.M102262200, 1:CAS:528:DC%2BD3MXosVGnsb8%3D, 11518704

    Article  PubMed  CAS  Google Scholar 

  47. Takaesu G, Kishida S, Hiyama A, et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell, 2000, 5: 649–658 10.1016/S1097-2765(00)80244-0, 1:CAS:528:DC%2BD3cXjtFSqt7w%3D, 10882101

    Article  PubMed  CAS  Google Scholar 

  48. Karin M, Greten F R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol, 2005, 5: 749–759 10.1038/nri1703, 1:CAS:528:DC%2BD2MXhtVGrurvL, 16175180

    Article  PubMed  CAS  Google Scholar 

  49. Wang Y, Tang Y, Teng L, et al. Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol, 2006, 7: 139–147 10.1038/ni1294, 1:CAS:528:DC%2BD28Xlt1ersw%3D%3D, 16378096

    Article  PubMed  CAS  Google Scholar 

  50. Caamaño J H, Rizzo C A, Durham S K, et al. Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J Exp Med, 1998, 187: 185–196 10.1084/jem.187.2.185, 9432976

    Article  PubMed  PubMed Central  Google Scholar 

  51. Franzoso G, Carlson L, Poljak L, et al. Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J Exp Med, 1998, 187: 147–159 10.1084/jem.187.2.147, 1:CAS:528:DyaK1cXkvVGgtA%3D%3D, 9432973

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Futterer A, Mink K, Luz A, et al. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity, 1998, 9: 59–70 10.1016/S1074-7613(00)80588-9, 1:CAS:528:DyaK1cXltVSisrY%3D, 9697836

    Article  PubMed  CAS  Google Scholar 

  53. Rennert P D, James D, Mackay F, et al. Lymph node genesis is induced by signaling through the lymphotoxin beta receptor. Immunity, 1998, 9: 71–79 10.1016/S1074-7613(00)80589-0, 1:CAS:528:DyaK1cXltVSis7c%3D, 9697837

    Article  PubMed  CAS  Google Scholar 

  54. Yilmaz Z B, Weih D S, Sivakumar V, et al. RelB is required for Peyer’s patch development: differential regulation of p52-RelB by lymphotoxin and TNF. EMBO J, 2003, 22: 121–130 10.1093/emboj/cdg004, 1:CAS:528:DC%2BD3sXovFaktA%3D%3D, 12505990

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Shinkura R, Kitada K, Matsuda F, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet, 1999, 22: 74–77 10.1038/8780, 1:CAS:528:DyaK1MXjtVags7c%3D, 10319865

    Article  PubMed  CAS  Google Scholar 

  56. Yin L, Wu L, Wesche H, Arthur C D, et al. Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science, 2001, 291: 2162–2165 10.1126/science.1058453, 1:CAS:528:DC%2BD3MXitFCltbc%3D, 11251123

    Article  PubMed  CAS  Google Scholar 

  57. Annunziata C M, Davis R E, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell, 2007, 12: 115–130 10.1016/j.ccr.2007.07.004, 1:CAS:528:DC%2BD2sXps1art74%3D, 17692804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Keats J J, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell, 2007, 12: 131–144 10.1016/j.ccr.2007.07.003, 1:CAS:528:DC%2BD2sXps1art78%3D, 17692805

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Zarnegar B J, Wang Y, Mahoney D J, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol, 2008, 9: 1371–1378 10.1038/ni.1676, 1:CAS:528:DC%2BD1cXhtlOjsbrM, 18997794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Liao G, Zhang M, Harhaj E W, et al. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem, 2004, 279: 26243–26250 10.1074/jbc.M403286200, 1:CAS:528:DC%2BD2cXkvVWgs78%3D, 15084608

    Article  PubMed  CAS  Google Scholar 

  61. Vallabhapurapu S, Matsuzawa A, Zhang W, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol, 2008, 9: 1364–13670 10.1038/ni.1678, 1:CAS:528:DC%2BD1cXhtlOjsb3K, 18997792

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. He J Q, Zarnegar B, Oganesyan G, et al. Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J Exp Med, 2006, 203: 2413–2418 10.1084/jem.20061166, 1:CAS:528:DC%2BD28XhtFGqt7fL, 17015635

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Varfolomeev E, Blankenship J W, Wayson S M, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell, 2007, 131: 669–681 10.1016/j.cell.2007.10.030, 1:CAS:528:DC%2BD2sXhsVSgurzF, 18022362

    Article  PubMed  CAS  Google Scholar 

  64. Vince J E, Wong W W, Khan N, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell, 2007, 131: 682–693 10.1016/j.cell.2007.10.037, 1:CAS:528:DC%2BD2sXhsVSgur3N, 18022363

    Article  PubMed  CAS  Google Scholar 

  65. Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev, 2009, 227: 75–86 10.1111/j.1600-065X.2008.00737.x, 1:CAS:528:DC%2BD1MXhsFGls7zI, 19120477

    Article  PubMed  CAS  Google Scholar 

  66. Kawai T, Sato S, Ishii K J, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol, 2004, 5: 1061–1068 10.1038/ni1118, 1:CAS:528:DC%2BD2cXnvFCgs7w%3D, 15361868

    Article  PubMed  CAS  Google Scholar 

  67. Hoshino K, Sugiyama T, Matsumoto M, et al. IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature, 2006, 440: 949–953 10.1038/nature04641, 1:CAS:528:DC%2BD28XjsVWktbo%3D, 16612387

    Article  PubMed  CAS  Google Scholar 

  68. Uematsu S, Sato S, Yamamoto M, et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J Exp Med, 2005, 201: 915–923 10.1084/jem.20042372, 1:CAS:528:DC%2BD2MXislOhu78%3D, 15767370

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Katherine A F, Sarah M M, Kerrie L F, et al. v IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 2003, 4: 491–496 10.1038/ni921

    Google Scholar 

  70. Hemmi H, Takeuchi O, Sato S, et al. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med, 2004, 199: 1641–1650 10.1084/jem.20040520, 1:CAS:528:DC%2BD2cXltFKlur0%3D, 15210742

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Perry A K, Chow E K, Goodnough J B, et al. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med, 2004, 199: 1651–1658 10.1084/jem.20040528, 1:CAS:528:DC%2BD2cXltFKluro%3D, 15210743

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Honda K, Takaoka A, Taniguchi T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity, 2006, 25: 349–360 10.1016/j.immuni.2006.08.009, 1:CAS:528:DC%2BD28XhtVOjtL%2FO, 16979567

    Article  PubMed  CAS  Google Scholar 

  73. Honda K, Yanai H, Negishi H, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature, 2005, 434: 772–777 10.1038/nature03464, 1:CAS:528:DC%2BD2MXivFCgurg%3D, 15800576

    Article  PubMed  CAS  Google Scholar 

  74. Oganesyan G, Saha S K, Guo B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature, 2005, 439: 208–211 10.1038/nature04374, 16306936

    Article  PubMed  Google Scholar 

  75. Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol, 2005, 6: 981–988 10.1038/ni1243, 1:CAS:528:DC%2BD2MXhtVajs7fJ, 16127453

    Article  PubMed  CAS  Google Scholar 

  76. Meylan E, Curran J, Hofmann K, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 2005, 437: 1167–1172 10.1038/nature04193, 1:CAS:528:DC%2BD2MXhtFahtLzO, 16177806

    Article  PubMed  CAS  Google Scholar 

  77. Seth R B, Sun L, Ea C K, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 2005, 122: 669–682 10.1016/j.cell.2005.08.012, 1:CAS:528:DC%2BD2MXhtVaqu73M, 16125763

    Article  PubMed  CAS  Google Scholar 

  78. Xu L G, Wang Y Y, Han K J, et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell, 2005, 19: 727–740 10.1016/j.molcel.2005.08.014, 1:CAS:528:DC%2BD2MXhtVyhtb%2FJ, 16153868

    Article  PubMed  CAS  Google Scholar 

  79. Saha S K, Pietras E M, He J Q, et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J, 2006, 25: 3257–3263 10.1038/sj.emboj.7601220, 1:CAS:528:DC%2BD28Xnt1yqurY%3D, 16858409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Kayagaki N, Phung Q, Chan S, et al. DUBA: a deubiquitinase that regulates type I interferon production. Science, 2007, 318: 1628–1632 10.1126/science.1145918, 1:CAS:528:DC%2BD2sXhtlyrsrrI, 17991829

    Article  PubMed  CAS  Google Scholar 

  81. Wang C, Chen T, Zhang J, et al. The E3 ubiquitin ligase Nrdp1 ‘preferentially’ promotes TLR-mediated production of type I interferon. Nat Immunol, 2009, 10: 744–752 10.1038/ni.1742, 1:CAS:528:DC%2BD1MXms1alt7s%3D, 19483718

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GenHong Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhang, P., Liu, Y. et al. TRAF-mediated regulation of immune and inflammatory responses. Sci. China Life Sci. 53, 159–168 (2010). https://doi.org/10.1007/s11427-010-0050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0050-3

Keywords

Navigation