Skip to main content
Log in

Structural immunology of costimualtory and coinhibitory molecules

  • Special Topic
  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The T cell costimulatory pathways are central to regulating immune responses, and targeting these pathways represents one of the most promising approaches for achieving immunotherapy. The molecular structures of costimulation revealed invaluable mechanistic insights underlying costimulatory receptor/ligand specificity, affinity, oligomeric state, and valency, which provided the bases for better manipulation of these signaling pathways. The incredible growth of this field led to identification of new members and unexpected interactions, revealing a complicated regulatory network of immune responses. The advances in structural biology of costimulation will promise unprecedented opportunities for furthering our understanding and therapeutic application of T cell costimulatory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen L, McGowan P, Ashe S, et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med, 1994, 179: 523–532 10.1084/jem.179.2.523, 1:CAS:528:DyaK2cXhtVCqu7w%3D, 7507508

    Article  PubMed  CAS  Google Scholar 

  2. Lenschow D J, Walunas T L, Bluestone J A. CD28/B7 system of T cell costimulation. Annu Rev Immunol, 1996, 14: 233–258 10.1146/annurev.immunol.14.1.233, 1:CAS:528:DyaK28XitlCgtLo%3D, 8717514

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz R H. T cell anergy. Annu Rev Immunol, 2003, 21: 305–334 10.1146/annurev.immunol.21.120601.141110, 1:CAS:528:DC%2BD3sXjtF2isrs%3D, 12471050

    Article  PubMed  CAS  Google Scholar 

  4. Harding F A, McArthur J G, Gross J A, et al. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature, 1992, 356: 607–609 10.1038/356607a0, 1:CAS:528:DyaK38Xitlentrk%3D, 1313950

    Article  PubMed  CAS  Google Scholar 

  5. Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol, 2004, 4: 336–347 10.1038/nri1349, 1:CAS:528:DC%2BD2cXjsFChsrY%3D, 15122199

    Article  PubMed  CAS  Google Scholar 

  6. Carreno B M, Collins M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol, 2002, 20: 29–53 10.1146/annurev.immunol.20.091101.091806, 1:CAS:528:DC%2BD38XjtlWgt7w%3D, 11861596

    Article  PubMed  CAS  Google Scholar 

  7. Schwartz J C, Zhang X, Fedorov A A, et al. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature, 2001, 410: 604–608 10.1038/35069112, 1:CAS:528:DC%2BD3MXis1Gru7g%3D, 11279501

    Article  PubMed  CAS  Google Scholar 

  8. Stamper C C, Zhang Y, Tobin J F, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature, 2001, 410: 608–611 10.1038/35069118, 1:CAS:528:DC%2BD3MXis1Gru7k%3D, 11279502

    Article  PubMed  CAS  Google Scholar 

  9. Wang S, Zhu G, Tamada K, et al. Ligand binding sites of inducible costimulator and high avidity mutants with improved function. J Exp Med, 2002, 195: 1033–1041 10.1084/jem.20011607, 1:CAS:528:DC%2BD38XivFyksb4%3D, 11956294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Zhang X, Schwartz J C, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 2004, 20: 337–347 10.1016/S1074-7613(04)00051-2, 1:CAS:528:DC%2BD2cXis1Kht70%3D, 15030777

    Article  PubMed  CAS  Google Scholar 

  11. Wang S, Bajorath J, Flies D B, et al. Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J Exp Med, 2003, 197: 1083–1091 10.1084/jem.20021752, 1:CAS:528:DC%2BD3sXjs1ygs7o%3D, 12719480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Lin D Y, Tanaka Y, Iwasaki M, et al. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci USA, 2008, 105: 3011–3016 10.1073/pnas.0712278105, 1:CAS:528:DC%2BD1cXjtVSitr4%3D, 18287011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Lazar-Molnar E, Yan Q, Cao E, et al. Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proc Natl Acad Sci USA, 2008, 105: 10483–10488 10.1073/pnas.0804453105, 1:CAS:528:DC%2BD1cXpsFKkuro%3D, 18641123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Pentcheva-Hoang T, Egen J G, Wojnoonski K, et al. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 2004, 21: 401–413 10.1016/j.immuni.2004.06.017, 1:CAS:528:DC%2BD2cXotFaktL0%3D, 15357951

    Article  PubMed  CAS  Google Scholar 

  15. Pentcheva-Hoang T, Chen L, Pardoll D M, et al. Programmed death-1 concentration at the immunological synapse is determined by ligand affinity and availability. Proc Natl Acad Sci USA, 2007, 104: 17765–17770 10.1073/pnas.0708767104, 1:CAS:528:DC%2BD2sXht12ltr3L, 17968013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Jones E Y, Stuart D I, Walker N P. Structure of tumour necrosis factor. Nature, 1989, 338: 225–228 10.1038/338225a0, 1:CAS:528:DyaL1MXhslWms7w%3D, 2922050

    Article  PubMed  CAS  Google Scholar 

  17. Smith C A, Farrah T, Goodwin R G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell, 1994, 76: 959–962 10.1016/0092-8674(94)90372-7, 1:CAS:528:DyaK2cXjtFKktLk%3D, 8137429

    Article  PubMed  CAS  Google Scholar 

  18. Naismith J H, Sprang S R. Modularity in the TNF-receptor family. Trends Biochem Sci, 1998, 23: 74–79 10.1016/S0968-0004(97)01164-X, 1:STN:280:DyaK1c7pvFGiuw%3D%3D, 9538693

    Article  PubMed  CAS  Google Scholar 

  19. Banner D W, D’Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell, 1993, 73: 431–445 10.1016/0092-8674(93)90132-A, 1:CAS:528:DyaK3sXkt1KnsLc%3D, 8387891

    Article  PubMed  CAS  Google Scholar 

  20. Sharpe A H, Freeman G J. The B7-CD28 superfamily. Nat Rev Immunol, 2002, 2: 116–126 10.1038/nri727, 1:CAS:528:DC%2BD38XitFSnu7s%3D, 11910893

    Article  PubMed  CAS  Google Scholar 

  21. Tivol E A, Borriello F, Schweitzer A N, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3: 541–547 10.1016/1074-7613(95)90125-6, 1:CAS:528:DyaK2MXps1Oqtrw%3D, 7584144

    Article  PubMed  CAS  Google Scholar 

  22. Waterhouse P, Penninger J M, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995, 270: 985–988 10.1126/science.270.5238.985, 1:CAS:528:DyaK2MXptlOlurk%3D, 7481803

    Article  PubMed  CAS  Google Scholar 

  23. Phan G Q, Yang J C, Sherry R M, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA, 2003, 100: 8372–8377 10.1073/pnas.1533209100, 1:CAS:528:DC%2BD3sXlsFGnt7c%3D, 12826605

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Linsley P S, Nadler S G. The clinical utility of inhibiting CD28- mediated costimulation. Immunol Rev, 2009, 229: 307–321 10.1111/j.1600-065X.2009.00780.x, 1:CAS:528:DC%2BD1MXhsFGls7nF, 19426230

    Article  PubMed  CAS  Google Scholar 

  25. Lenschow D J, Zeng Y, Thistlethwaite J R, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science, 1992, 257: 789–792 10.1126/science.1323143, 1:CAS:528:DyaK38XlsVyru70%3D, 1323143

    Article  PubMed  CAS  Google Scholar 

  26. Larsen C P, Pearson T C, Adams A B, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant, 2005, 5: 443–453 10.1111/j.1600-6143.2005.00749.x, 1:CAS:528:DC%2BD2MXivFSisb4%3D, 15707398

    Article  PubMed  CAS  Google Scholar 

  27. Ronchese F, Hausmann B, Hubele S, et al. Mice transgenic for a soluble form of murine CTLA-4 show enhanced expansion of anti gen-specific CD4+ T cells and defective antibody production in vivo. J Exp Med, 1994, 179: 809–17. 10.1084/jem.179.3.809, 1:CAS:528:DyaK2cXhs1Wjtbo%3D, 8113677

    Article  PubMed  CAS  Google Scholar 

  28. Linsley P S, Greene J L, Brady W, et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1994, 1: 793–801 10.1016/S1074-7613(94)80021-9, 1:CAS:528:DyaK2MXislWktLo%3D, 7534620

    Article  PubMed  CAS  Google Scholar 

  29. Peach R J, Bajorath J, Brady W, et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J Exp Med, 1994, 180: 2049–2058 10.1084/jem.180.6.2049, 1:CAS:528:DyaK2cXmsFehtrk%3D, 7964482

    Article  PubMed  CAS  Google Scholar 

  30. Larsen C P, Pearson T C, Adams A B, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant, 2005, 5: 443–453 10.1111/j.1600-6143.2005.00749.x, 1:CAS:528:DC%2BD2MXivFSisb4%3D, 15707398

    Article  PubMed  CAS  Google Scholar 

  31. Cardona K, Korbutt G S, Milas Z, et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med, 2006, 12: 304–306 10.1038/nm1375, 1:CAS:528:DC%2BD28XitVGntL4%3D, 16501570

    Article  PubMed  CAS  Google Scholar 

  32. Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med, 1999, 5: 1365–1369 10.1038/70932, 1:CAS:528:DyaK1MXnvFCqt74%3D, 10581077

    Article  PubMed  CAS  Google Scholar 

  33. Tseng S Y, Otsuji M, Gorski K, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med, 2001, 193: 839–846 10.1084/jem.193.7.839, 1:CAS:528:DC%2BD3MXisVyhurg%3D, 11283156

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 1999, 11: 141–151 10.1016/S1074-7613(00)80089-8, 1:CAS:528:DyaK1MXlvVShsb8%3D, 10485649

    Article  PubMed  CAS  Google Scholar 

  35. Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science, 2001, 291: 319–322 10.1126/science.291.5502.319, 1:CAS:528:DC%2BD3MXktlKlsw%3D%3D, 11209085

    Article  PubMed  CAS  Google Scholar 

  36. Latchman Y, Wood C R, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol, 2001, 2: 261–268 10.1038/85330, 1:CAS:528:DC%2BD3MXhvVaksrc%3D, 11224527

    Article  PubMed  CAS  Google Scholar 

  37. Freeman G J, Long A J, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 2000, 192: 1027–1034 10.1084/jem.192.7.1027, 1:CAS:528:DC%2BD3cXntFSlt7o%3D, 11015443

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Shin T, Kennedy G, Gorski K, et al. Cooperative B7-1/2 (CD80/CD86) and B7-DC costimulation of CD4+ T cells independent of the PD-1 receptor. J Exp Med, 2003, 198: 31–38 10.1084/jem.20030242, 1:CAS:528:DC%2BD3sXlsVeku7w%3D, 12847135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Butte M J, Keir M E, Phamduy T B, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007, 27: 111–122 10.1016/j.immuni.2007.05.016, 1:CAS:528:DC%2BD2sXosFeqtrk%3D, 17629517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Dong H, Strome S E, Salomao D R, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002, 8: 793–800 1:CAS:528:DC%2BD38Xls12msLo%3D, 12091876

    Article  PubMed  CAS  Google Scholar 

  41. Driessens G, Kline J, Gajewski T F. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev, 2009, 229: 126–144 10.1111/j.1600-065X.2009.00771.x, 1:CAS:528:DC%2BD1MXhsFGls7jE, 19426219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Barber D L, Wherry E J, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439: 682–687 10.1038/nature04444, 1:CAS:528:DC%2BD28XhtFyktL0%3D, 16382236

    Article  PubMed  CAS  Google Scholar 

  43. Keir M E, Butte M J, Freeman G J, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008, 26: 677–704 10.1146/annurev.immunol.26.021607.090331, 1:CAS:528:DC%2BD1cXltlWktrY%3D, 18173375

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShengDian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Chen, L. Structural immunology of costimualtory and coinhibitory molecules. Sci. China Life Sci. 53, 183–189 (2010). https://doi.org/10.1007/s11427-010-0043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0043-2

Keywords

Navigation