Skip to main content
Log in

Generation and analysis of expressed sequence tags from the medicinal plant Salvia miltiorrhiza

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Salvia miltiorrhiza Bge. is a well-known traditional Chinese herb. Its roots have been formulated and used clinically for the treatment of various diseases. However, little genetic information has so far been available and this fact has become a major obstacle for molecular studies. To address this lack of genetic information, an Expressed Sequence Tag (EST) library from whole plantlets of S. miltiorrhiza was generated. From the 12959 cDNA clones that were randomly selected and subjected to single-pass sequencing from their 5′ ends, 10288 ESTs (with sizes⩾100 bp) were selected and assembled into 1288 contigs, leaving 2937 singletons, for a total of 4225 unigenes. These were analyzed using BLASTX (against protein databases), RPS-BLAST (against a conserved domain database) as well as the web-based KEGG Automatic Annotation Server for metabolic enzyme assignment. Based on the metabolic enzyme assignment, expression patterns of 14 secondary metabolic enzyme genes in different organs and under different treatments were verified using real-time PCR analysis. Additionally, a total of 122 microsatellites were identified from the ESTs, with 89 having sufficient flanking sequences for primer design. This set of ESTs represents a significant proportion of the S. miltiorrhiza transcriptome, and gives preliminary insights into the gene complement of S. miltiorrhiza. They will prove useful for uncovering secondary metabolic pathways, analyzing cDNA-array based gene expression, genetic manipulation to improve yield of desirable secondary products, and molecular marker identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou L, Zuo Z, Chow M S. Danshen: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol, 2005, 45: 1345–1359 10.1177/0091270005282630, 1:CAS:528:DC%2BD2MXhtlSjtrzL, 16291709

    Article  PubMed  CAS  Google Scholar 

  2. Zhou W, Ruigrok T J. Protective effects of danshen during myocardial ischemia and reperfusion: An isolated rat heart study. Am J Clin Med, 1990, 18: 19–24 10.1142/S0192415X90000046, 1:STN:280:DyaK3M%2FltFeksQ%3D%3D

    Article  CAS  Google Scholar 

  3. Durairajan S S, Yuan Q, Xie L, et al. Salcianolic acid B inhibits Abeta fibril formation and disaggregates preformed fibrils and protects against Abeta-induced cytotoxicty. Neurochem Int, 2008, 52: 741–750 10.1016/j.neuint.2007.09.006, 1:CAS:528:DC%2BD1cXhsVKgsro%3D, 17964692

    Article  PubMed  CAS  Google Scholar 

  4. Lee C Y, Sher H F, Chen H W, et al. Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol Cancer Ther, 2008, 7: 3527–3238 10.1158/1535-7163.MCT-07-2288, 1:CAS:528:DC%2BD1cXhtlGgsrfF, 19001436

    Article  PubMed  CAS  Google Scholar 

  5. Wang X, Morris-Natschke S L, Lee K H. New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev, 2006, 27: 133–148 10.1002/med.20077

    Article  Google Scholar 

  6. Ge X, Wu J. Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza hairy roots by beta-aminobutyric acid. Appl Microbiol Biotechnol, 2005, 68: 183–188 10.1007/s00253-004-1873-2, 1:CAS:528:DC%2BD2MXms1yhsrg%3D, 15672269

    Article  PubMed  CAS  Google Scholar 

  7. Yan Q, Hu Z, Tan R X, et al. Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continunous operation. J Biotechnol, 2005 119: 416–424 10.1016/j.jbiotec.2005.04.020, 1:CAS:528:DC%2BD2MXhtVarsLbK, 15963590

    Article  PubMed  CAS  Google Scholar 

  8. Chang P N, Mao J C, Huang S H, et al. Analysis of cardioprotective effects using purified Salvia miltiorrhiza extract on isolated rat hearts. J Pharmacol Sci, 2006, 101: 245–249 10.1254/jphs.FPJ05034X, 1:CAS:528:DC%2BD28XnvFalsLo%3D, 16837771

    Article  PubMed  CAS  Google Scholar 

  9. Lin Y L, Lee T F, Huang Y J, et al. Antiproliferative effect of salvianolic acid A on rat hepatic stellate cells. J Pharm Pharmacol, 2006, 58: 933–939 10.1211/jpp.58.7.0008, 1:CAS:528:DC%2BD28Xps1Shu70%3D, 16805953

    Article  PubMed  CAS  Google Scholar 

  10. Vukovic-Gacic B, Nikcevic S, Beric-Bjedov T, et al. Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae. Food Chem Toxicol, 44: 1730–1738

  11. Wan J M, Sit W H, Lee C L, et al. Protection of lethal toxicity of endotoxin by Salvia miltiorrhiza BUNGE is via reduction in tumor necrosis factor alpha release and liver injury. Int Immunopharmacol, 2006, 6: 750–758 10.1016/j.intimp.2005.11.008, 1:CAS:528:DC%2BD28Xis1Sqs78%3D, 16546705

    Article  PubMed  CAS  Google Scholar 

  12. Murashige T, Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant, 1962, 15: 473–497 10.1111/j.1399-3054.1962.tb08052.x, 1:CAS:528:DyaF3sXksFKm

    Article  CAS  Google Scholar 

  13. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res, 1999, 9: 868–877 10.1101/gr.9.9.868, 1:CAS:528:DyaK1MXmslKgs7Y%3D, 10508846

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Pearson W R, Wood T, Zhang Z, et al. Comparison of DNA sequences with protein sequences. Genomics, 1997, 46: 24–36 10.1006/geno.1997.4995, 1:CAS:528:DyaK2sXnvVCkur8%3D, 9403055

    Article  PubMed  CAS  Google Scholar 

  15. Conesa A, Gotz S, Garcia-Gomez J M, et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2008, 21: 3674–3676 10.1093/bioinformatics/bti610

    Article  Google Scholar 

  16. Ashburner M, Ball C A, Blake J A, et al. Gene ontology: Tool for the unification of biology. Nat Genet, 2000, 25: 25–29 10.1038/75556, 1:CAS:528:DC%2BD3cXjtFSlsbc%3D, 10802651

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Thurston M I, Field D. Msatfinder: Detection and characterization of microsatellites, CEH Oxford, Mansfield Road, Oxford OX1 3SR, 2006 [http://www.genomics.ceh.ac.uk/msatfinder]

    Google Scholar 

  18. Susko E, Roger A J. Estimating and comparing the rates of gene discovery and expressed sequence tag (EST) frequencies in EST surveys. Bioinformatics, 2004, 20: 2279–2287 10.1093/bioinformatics/bth239, 1:CAS:528:DC%2BD2cXnvVOrtLo%3D, 15059814

    Article  PubMed  CAS  Google Scholar 

  19. Huh G H, Lee S J, Bae Y S, et al. Molecular cloning and characterization of cDNAs for anionic and neutral peroxidases from suspension cultured-cells of sweet potato and their differential expression in response to stress. Mol Gen Genet, 1997, 255: 382–391 10.1007/s004380050510, 1:CAS:528:DyaK2sXlsFegtrw%3D, 9267434

    Article  PubMed  CAS  Google Scholar 

  20. Edreva A. Pathogenesis-related proteins: Research progress in the last 15 years. Gen Appl Plant Physiol, 2005, 31: 105–124 1:CAS:528:DC%2BD2sXks1ant78%3D

    CAS  Google Scholar 

  21. Mitsuhara I, Iwai T, Seo S, et al. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol Genet Genomics, 2008, 279: 415–427 10.1007/s00438-008-0322-9, 1:CAS:528:DC%2BD1cXksVyitbo%3D, 18247056

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Mak C H, Poon M W, Lun H M, et al. Heat-inducible translationally controlled tumor protein of Trichinella pseudospiralis: Cloning and regulation of gene expression. Parasitol Res, 2007, 100: 1105–1111 10.1007/s00436-006-0373-y, 1:STN:280:DC%2BD2s7jtVKhtg%3D%3D, 17149606

    Article  PubMed  CAS  Google Scholar 

  23. Berkowitz O, Jost R, Pollmann S, et al. Characterization of TCTP, the translationally controlled tumor proteinprotein, from Arabidopsis thaliana. Plant Cell, 2008, 20: 3430–3447 10.1105/tpc.108.061010, 1:CAS:528:DC%2BD1MXitVaru78%3D, 19060111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Broz A K, Broeckling C D, He J, et al. A first step in understanding an invasive weed through its genes: An EST analysis of invasive Centaurea maculosa. BMC Plant Biol, 2007, 7: 25 10.1186/1471-2229-7-25, 17524143

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bereczky Z, Wang H, Schubert V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem, 2003, 278: 24679–24704 10.1074/jbc.M301365200

    Article  Google Scholar 

  26. Lasat M M, Pence N S, Garvin D F, et al. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Botany, 2000, 51: 71–79 10.1093/jexbot/51.342.71, 1:CAS:528:DC%2BD3cXpslKjtA%3D%3D

    Article  CAS  Google Scholar 

  27. Meerts P, Duchene P, Gruber W, et al. Metal accumulation and competitive ability in metallicolous and non-metallicolous Thlaspi caerulescens fed with different Zn salts. Plant Soil, 2003, 249: 1–8 10.1023/A:1022510130148, 1:CAS:528:DC%2BD3sXhsVyrsrc%3D

    Article  CAS  Google Scholar 

  28. Singh K B, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress response. Curr Opin Plant Biol, 2002, 5: 430–436 10.1016/S1369-5266(02)00289-3, 1:CAS:528:DC%2BD38XmtlGjtbw%3D, 12183182

    Article  PubMed  CAS  Google Scholar 

  29. Ge X C, Wu J Y. Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci, 2005, 168: 487–491 10.1016/j.plantsci.2004.09.012, 1:CAS:528:DC%2BD2cXhtVKksbrN

    Article  CAS  Google Scholar 

  30. Huang B, Yi B, Duan Y, et al. Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep, 2008, 35: 601–612 10.1007/s11033-007-9130-2, 1:CAS:528:DC%2BD1cXhsVKjtrrM, 17805988

    Article  PubMed  CAS  Google Scholar 

  31. Matsuno M, Nagatsu A, Olihara Y, et al. CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4′-hydroxyphenyllactic acid 3-hydroxylase invol285ed in rosmarinic acid biosynthesis. FEBS Lett, 2000, 514: 219–224 10.1016/S0014-5793(02)02368-2

    Article  Google Scholar 

  32. Gómez-Vásquez R, Day R, Buschmann H, et al. Phenylpropanoids, phenylalanine ammonia lyase and peroxidases in elicitor-challenged cassava (Manihot esculenta) suspension cells and leaves. Ann Bot, 2004, 94: 87–97 10.1093/aob/mch107, 15145789

    Article  PubMed  PubMed Central  Google Scholar 

  33. Whetten R, Sederoff R. Lignin biosynthesis. Plant Cell, 1955, 7: 1001–1013 10.1105/tpc.7.7.1001

    Article  Google Scholar 

  34. Liu Y, Wang H, Ye H C, et al. Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering. J Integr Plant Biol, 2005, 47: 769–782 10.1111/j.1744-7909.2005.00111.x, 1:CAS:528:DC%2BD28Xpt1yquw%3D%3D

    Article  CAS  Google Scholar 

  35. Namdeo A G. Plant cell elicitation for production of secondary metabolites: A Review. Phcog Rev, 2007, 1: 69–79 1:CAS:528:DC%2BD2sXhtVSit7zL

    CAS  Google Scholar 

  36. Xiao Y, Gao S, Di P, et al. Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plant, 2009, 137: 1–9 10.1111/j.1399-3054.2009.01257.x, 1:CAS:528:DC%2BD1MXhtVyiu7zN

    Article  PubMed  CAS  Google Scholar 

  37. Wang X Y, Cui G H, Huang L Q, et al. Effects of methyl jasmonat on accumulation and release of tanshinones in suspension cultures of Salvia miltiorrhiza hairy root. Zhongguo Zhong Yao Za Zhi (in Chinese), 2007, 32: 300–302 1:CAS:528:DC%2BD1cXjsVyjsw%3D%3D

    CAS  Google Scholar 

  38. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res, 1989, 17: 6463–6471 10.1093/nar/17.16.6463, 1:CAS:528:DyaL1MXls1ylt7Y%3D, 2780284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Kim J, Jo B H, Lee K L, et al. Identification of new microsatellite markers in Panax ginseng. Mol Cells, 2007, 24: 60–68 1:CAS:528:DC%2BD2sXhtV2gt73L, 17846499

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZheZhi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y., Wang, Z., Tian, W. et al. Generation and analysis of expressed sequence tags from the medicinal plant Salvia miltiorrhiza. Sci. China Life Sci. 53, 273–285 (2010). https://doi.org/10.1007/s11427-010-0005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0005-8

Keywords

Navigation