Skip to main content
Log in

Phylogeographic analysis of human papillomavirus 58

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Human papillomavirus 58 (HPV58) is one type of HPV with high risk of causing cervical cancer. Unusually high prevalence of HPV58 has been reported in Asia, Africa and some other areas. However, due to the scattered distribution of global data, in addition to the lack of data of some HPV58 high-incidence nations and regions, like Mainland China, a comprehensive analysis of the global geographical distribution of HPV58 remains blank so far. In this study, HPV58 from the human cervical cancer tissue was detected in Mainland China, and 14 new HPV58-E6/L1 gene sequences were obtained. Moreover, phylogeographic analysis has been conducted combining the HPV58 sequences that have been deposited in GenBank since 1985. The study result shows that the sequences detected from the Shanghai, Jiangsu and Sichuan areas are homologous with those found in the past from Hong Kong and Xi’an, China, as well as Japan and other Southeast Asian areas. Furthermore, Western Africa is considered to be the “root” source of the HPV58 variant, while Mainland China and Southeast Asia are “transit points” and the new sources of HPV58 after receiving the isolates from the “root” source; like HPV16 and HPV18, the HPV58 might also be one of the major HPV types associated with the development and spread of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lombard I, Vincent-Salomon A, Validier P, et al. Human papillomavirus genotype as a major determinant of the course of cervical. J Clin Oncol, 1998, 16: 2613–2619 9704710, 1:STN:280:DyaK1czmvVCjug%3D%3D

    PubMed  CAS  Google Scholar 

  2. Mclachlin C M. Human papillomavirus in cervical neoplasia: Role, risk factors and implications. Clin Lab Med, 2000, 20: 257–270 10863640, 1:STN:280:DC%2BD3cvjsFCqtQ%3D%3D

    PubMed  CAS  Google Scholar 

  3. Franco E L, Duarte-Franco E, Ferenczy A. Cervical cancer: Epidemiology, prevention and the role of human papillomavirus infection. CMAJ, 2001, 164: 1017–1025 11314432, 1:STN:280:DC%2BD3M3itVymtQ%3D%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Calleja-Macias I E, Villa L L, Prado J C, et al. Worldwide genomic diversity of the high-risk human papillomavirus types 31, 35, 52, and 58, four close relatives of human papillomavirus type 16. J Virol, 2005, 79: 13630–13640 10.1128/JVI.79.21.13630-13640.2005, 16227283, 1:CAS:528:DC%2BD2MXhtFKjtr%2FE

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Clifford G M, Smith J S, Plummer M, et al. Human papillomavirus types in invasive cervical cancer worldwide: A meta-analysis. Br J Cancer, 2003, 88: 63–73 10.1038/sj.bjc.6600688, 12556961, 1:STN:280:DC%2BD3s%2Fks12qtw%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Chan P K, Lam C W, Cheung TH, et al. Association of human papillomavirus type 58 variant with the risk of cervical cancer. J Natl Cancer Inst, 2002, 94: 1249–1301 12189229, 1:CAS:528:DC%2BD38XntVyjsLw%3D

    Article  PubMed  CAS  Google Scholar 

  7. Lin Q Q, Yu S Z, Qu W, et al. Human papillomavirus types 52 and 58. Int J Cancer, 1998, 75: 484–485 10.1002/(SICI)1097-0215(19980130)75:3<484::AID-IJC25>3.0.CO;2-7, 9455813, 1:STN:280:DyaK1c7hsFenug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  8. Wu Y, Chen Y, Li L, et al. Associations of high-risk HPV types and viral load with cervical cancer in China. J Clin Virol, 2006, 35: 264–272 10.1016/j.jcv.2005.07.011, 16183329, 1:CAS:528:DC%2BD28XhtFShsL4%3D

    Article  PubMed  CAS  Google Scholar 

  9. Huang S, Afonina I, Miller B A, et al. Human papillomavirus types 52 and 58 are prevalent in cervical cancer from Chinese women. Int J Cancer, 1997, 70: 408–411 10.1002/(SICI)1097-0215(19970207)70:4<408::AID-IJC6>3.0.CO;2-#, 9033647, 1:STN:280:DyaK2s7osF2ltA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  10. Liu J H, Huang X, Liao G W, et al. The comparative study of HPV infection in cervical cancer patients and other risk factors between China and Australia. Chin J Med, 2003, 83: 748–752

    Google Scholar 

  11. Lai H C, Sun C A, Yu M H, et al. Favorable clinical outcome of cervical cancers infected with human papilloma virus type 58 and related types. Int J Cancer, 1999, 84: 553–557 10.1002/(SICI)1097-0215(19991222)84:6<553::AID-IJC2>3.0.CO;2-4, 10567897, 1:STN:280:DC%2BD3c%2Fjs1Crtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  12. Lai C H, Huang H J, Hsueh S, et al. Human papillomavirus genotype in cervical cancer: A population-based study. Int J Cancer, 2007, 120: 1999–2006 10.1002/ijc.22538, 17266033, 1:CAS:528:DC%2BD2sXjsVCqsbk%3D

    Article  PubMed  CAS  Google Scholar 

  13. Chan P K, Li W H, Chan M Y, et al. High prevalence of human papillomavirus type 58 in Chinese women with cervical cancer and precancerous lesions. J Med Virol, 1999, 59: 232–238 10.1002/(SICI)1096-9071(199910)59:2<232::AID-JMV18>3.0.CO;2-7, 10459162, 1:STN:280:DyaK1MzovFyjtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  14. Wallace R G, Hodac H, Lathrop R H, et al. Lathrop, et al. A statistical phylogeography of influenza A H5N1. Proc Natl Acad Sci USA, 2007, 104: 4473–4478 10.1073/pnas.0700435104, 17360548, 1:CAS:528:DC%2BD2sXjsFKnsbs%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Stewart A C, Eriksson A M, Manos M M, et al. Intratype variation in 12 human papillomavirus types: A worldwide perspective. J Virol, 1996, 70: 3127–3136 8627792, 1:CAS:528:DyaK28Xit1Ohu7g%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Cerqueira D M, Camara G N, da Cruz M R, et al. Variants of human papillomavirus types 53, 58 and 66 identified in Central Brazil. Virus Genes, 2003, 26: 83–87 10.1023/A:1022386323921, 12680696, 1:CAS:528:DC%2BD3sXhtFGjtLw%3D

    Article  PubMed  CAS  Google Scholar 

  17. Qu W, Jiang G, Cruz Y, et al. PCR detection of human papillomavirus: Comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol, 1997, 35: 1304–1310 9163434, 1:CAS:528:DyaK2sXjslOqurs%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Cheah P L, Looi L M. Biology and pathological associations of the human papillomaviruses: A review. Malays J Pathol, 1998, 20: 1–10 10879257, 1:STN:280:DC%2BD3czjslChsw%3D%3D

    PubMed  CAS  Google Scholar 

  19. Sichero L, Villa L L. Epidemiological and functional implications of molecular variants of human papillomavirus. Braz J Med Biol Res, 2006, 39: 707–717 10.1590/S0100-879X2006000600002, 16751975, 1:CAS:528:DC%2BD28XntV2gtr0%3D

    Article  PubMed  CAS  Google Scholar 

  20. Yamada T, Wheeler C M, Halpern A L, et al. Human papillomavirus type 16 variant lineages in United States populations characterized by nucleotide sequence analysis of the E6, L2, and L1 coding segments. J Virol, 1995, 69: 7743–7795 7494284, 1:CAS:528:DyaK2MXptlOkur8%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Chen Z, Terai M, Fu L, et al. Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses. J Virol, 2005, 79: 7014–7036 10.1128/JVI.79.11.7014-7023.2005, 15890941, 1:CAS:528:DC%2BD2MXksFKgs7Y%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Ho L, Chan S Y, Burk R D, et al. The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J Virol, 1993, 67: 6413–6435 8411343, 1:CAS:528:DyaK2cXktlGk

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Ho L, Chan S Y, Chow V, et al. Sequence variants of human papillomavirus type 16 in clinical samples permit verification and extension of epidemiological studies and construction of a phylogenetic tree. J Clin Microbiol, 1991, 29: 1765–1836 1663516, 1:STN:280:DyaK387ivFGluw%3D%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Kirii Y, Iwamoto S, Matsukura T. Human papillomavirus type 58 DNA sequence. Virology, 1991, 185: 424–430 10.1016/0042-6822(91)90791-9, 1656594, 1:CAS:528:DyaK38XmtVKjtrs%3D

    Article  PubMed  CAS  Google Scholar 

  25. Chan P K, Chang A R, Cheung J L, et al. Determinants of cervical human papillomavirus infection: Differences between high- and low-oncogenic risk types. J Infect Dis, 2002, 185: 28–35 10.1086/338010, 11756978

    Article  PubMed  Google Scholar 

  26. Chan P K, Chang A R, Tam W H, et al. Prevalence and genotype distribution of cervical human papillomavirus infection: Comparison between pregnant women and non-pregnant controls. J Med Virol, 2002, 67: 583–590 10.1002/jmv.10142, 12116008

    Article  PubMed  Google Scholar 

  27. Xi L F, Touré P, Critchlow C W, et al. Prevalence of specific types of human papillomavirus and cervical squamous intraepithelial lesions in consecutive, previously unscreened, West-African women over 35 years of age. Int J Cancer, 2003, 103: 803–811 10.1002/ijc.10876, 12516102, 1:CAS:528:DC%2BD3sXntVaruw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  28. Xin C Y, Matsumoto K, Yoshikawa H, et al. Analysis of E6 variants of human papillomavirus type 33, 52 and 58 in Japanese women with cervical intraepithelial neoplasia/cervical cancer in relation to their oncogenic potential. Cancer Lett, 2001, 170: 19–24 10.1016/S0304-3835(01)00570-5, 11448530, 1:CAS:528:DC%2BD3MXltVejs78%3D

    Article  PubMed  CAS  Google Scholar 

  29. Cho N H, An H J, Jeong J K, et al. Genotyping of 22 human papillomavirus types by DNA chip in Korean women: comparison with cytologic diagnosis. Am J Obstet Gynecol, 2003, 188: 56–62 10.1067/mob.2003.120, 12548196, 1:CAS:528:DC%2BD3sXhsV2ns74%3D

    Article  PubMed  CAS  Google Scholar 

  30. Bernard H U, Calleja-Macias I E, Dunn S T. Genome variation of human papillomavirus types: Phylogenetic and medical implications. Int J Cancer, 2006, 118: 1071–1076 10.1002/ijc.21655, 16331617, 1:CAS:528:DC%2BD28XhsFeksL0%3D

    Article  PubMed  CAS  Google Scholar 

  31. DeFilippis V R, Ayala F J, Villarreal L P. Evidence of diversifying selection in human papillomavirus type 16 E6 but not E7 oncogenes. J Mol Evol, 2002, 55: 491–499 10.1007/s00239-002-2344-y, 12355268, 1:CAS:528:DC%2BD38XnsVersLw%3D

    Article  PubMed  CAS  Google Scholar 

  32. Villa L L, Costa R L, Petta C A, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11 16 and 18) L1 virus-like particle vaccine in young women a randomized double-blind placebocontrolled multicentre phase II efficacy trial. Lancet Oncol, 2005, 6: 271–278 10.1016/S1470-2045(05)70101-7, 15863374

    Article  PubMed  Google Scholar 

  33. Harper D M, Franco E L, Wheeler C, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: A randomized controlled trial. Lancet, 2004, 364: 1757–1765 10.1016/S0140-6736(04)17398-4, 15541448, 1:CAS:528:DC%2BD2cXpslGju78%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhong or CongJian Xu.

Additional information

Supported by the National Science and Technology Pillar Program of China (Grant No. 2007BAI24B01) and the National High Technology Research and Development Program of China (Grant No. 2006AA02Z342) the Shanghai Leading Academic Discipline Project (B111) and Shanghai Science and Technology Committee (Grant No. 07XD14025).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Li, Z., He, Y. et al. Phylogeographic analysis of human papillomavirus 58. SCI CHINA SER C 52, 1164–1172 (2009). https://doi.org/10.1007/s11427-009-0149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0149-6

Keywords

Navigation