Skip to main content
Log in

The expression profile of genes in rice roots under low phosphorus stress

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Phosphorus (P) is one of the most essential macronutrients required for plant growth. Although it is abundant in soil, P is often the limiting nutrient for crop yield potential because of the low concentration of soluble P that plants can absorb directly. The gene expression profile was investigated in rice roots at 6, 24 and 72 h under low P stress and compared with a control (normal P) profile, using a DNA chip of 60000 oligos (70 mer) that represented all putative genes of the rice genome. A total of 795 differentially expressed genes were identified in response to phosphate (Pi) starvation in at least one of the treatments. Based on the analysis, we found that: (i) The genes coding for the Pi transporter, acid phosphatase and RNase were up-regulated in rice roots; (ii) the genes involved in glycolysis were first up-regulated and then down-regulated; (iii) several genes involved in N metabolism and lipid metabolism changed their expression patterns; (iv) some genes involved in cell senescence and DNA or protein degradation were up-regulated; and (v) some transmembrane transporter genes were up-regulated. The results may provide useful information in the molecular process associated with Pi deficiency and thus facilitate research in improving Pi utilization in crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raghothama K G. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 665–693, 10.1146/annurev.arplant.50.1.665, 1:CAS:528:DyaK1MXkt1yktrs%3D, 15012223

    Article  PubMed  CAS  Google Scholar 

  2. Lisa C W, Sebastien P C P R, Alastair H F, et al. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol, 2001, 126: 875–882, 10.1104/pp.126.2.875

    Article  Google Scholar 

  3. Föhse D, Classen N, Jungk A. Phosphorus efficiency of plants. II. Significance of root radius, root hairs and cation-anion balance for phosphorus influx in seven plant species. Plant Soil, 1991, 132: 261–272

    Google Scholar 

  4. Bates T R, Lynch J P. Stimulation of foot hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ, 1996, 19: 529–539, 10.1111/j.1365-3040.1996.tb00386.x, 1:CAS:528:DyaK28XktlGgt78%3D

    Article  CAS  Google Scholar 

  5. Keerthisinghe G, Hocking P J, Ryan P R, et al. Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ, 1998, 21: 467–478, 10.1046/j.1365-3040.1998.00300.x, 1:CAS:528:DyaK1cXlt1elsrg%3D

    Article  CAS  Google Scholar 

  6. Grierson P F. Organic acids in the rhizosphere of Banksia integrifolia L.F. Plant Soil, 1992, 44: 259–265, 10.1007/BF00012883

    Article  Google Scholar 

  7. Lipton D S, Blancher R W, Blevins D G. Citrate, malate and succinate concentrations in exuduates from P-sufficient and P-starved Medicago sativa L. seedlings. Plant Physiol, 1987, 85: 315–317, 10.1104/pp.85.2.315, 1:CAS:528:DyaL1cXjs1Sk, 16665693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Muchhal U S, Pardo J M, Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA, 1996, 93: 10519–10523, 10.1073/pnas.93.19.10519, 1:CAS:528:DyaK28XlslGrs7Y%3D, 8927627

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Muchhal U S, Raghothama K G. Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA, 1999, 96: 5868–5872, 10.1073/pnas.96.10.5868, 1:CAS:528:DyaK1MXjtFCnu7c%3D, 10318976

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Leggewie G, Willmitzer L, Riesmeier J W. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. Plant Cell, 1997, 9: 381–392, 10.1105/tpc.9.3.381, 1:CAS:528:DyaK2sXitFWqtrs%3D, 9090882

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Haran S, Logendra S, Seskar M, et al. Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol, 2000, 124: 615–626, 10.1104/pp.124.2.615, 1:CAS:528:DC%2BD3cXnsF2rsL8%3D, 11027712

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Baldwin J C, Karthikeyan A S, Raghothama K G. LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol, 2001, 125: 728–737, 10.1104/pp.125.2.728, 1:CAS:528:DC%2BD3MXhs1KlsLg%3D, 11161030

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Dodds P N, Clarke A E, Newbigin E. Molecular characterization of an S-like RNase of Nicotiana alata that is induced by phosphate starvation. Plant Mol Biol, 1996, 31: 227–238, 10.1007/BF00021786, 1:CAS:528:DyaK28XltFGltb0%3D, 8756589

    Article  PubMed  CAS  Google Scholar 

  14. Bariola P A, Howard C J, Taylor C P, et al. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J, 1994, 6: 673–685, 10.1046/j.1365-313X.1994.6050673.x, 1:CAS:528:DyaK2MXis1Sntbk%3D, 8000425

    Article  PubMed  CAS  Google Scholar 

  15. Stephen M G D, Moorhead G B G, Lefebvre D D. Phosphate starvation inducible ‘bypasses’ of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol, 1989, 90: 1272–1278

    Google Scholar 

  16. Plaxton W C. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 185–214, 10.1146/annurev.arplant.47.1.185, 1:CAS:528:DyaK28XjtlWgsbg%3D, 15012287

    Article  PubMed  CAS  Google Scholar 

  17. Bergman L W, McClinton D C, Madden S L, et al. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase (PHO5) of Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1986, 83: 6070–6074, 10.1073/pnas.83.16.6070, 1:CAS:528:DyaL28XlsVOnsb8%3D, 3526349

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Lenburg M E, O’shea E K. Signaling phosphate starvation. Trends Biochem Sci, 1996, 21: 383–387, 1:CAS:528:DyaK28XmsleitLg%3D, 8918192

    Article  PubMed  CAS  Google Scholar 

  19. Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev, 2001, 15: 2122–2133, 10.1101/gad.204401, 1:CAS:528:DC%2BD3MXmt1ajsb8%3D, 11511543

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Zakhleniuk O V, Raines C A, Lloyd J C. pho3: A phosphorusdeficient mutant of Arabidopsis thaliana (L.) Heynh Planta, 2001, 212: 529–534, 10.1007/s004250000450, 1:CAS:528:DC%2BD3MXhs1Cgtrg%3D

    Article  CAS  Google Scholar 

  21. Chen D L, Delatorre C A, Bakker A, et al. Conditional identification of phosphate starvation-response mutants in Arabidopsis thaliana. Planta, 2000, 211: 13–22, 10.1007/s004250000271, 1:CAS:528:DC%2BD3cXjvVyhs7k%3D, 10923699

    Article  PubMed  CAS  Google Scholar 

  22. Ticconi C A, Delatorre C A, Lahner B, et al. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J, 2004, 37: 801–814, 10.1111/j.1365-313X.2004.02005.x, 1:CAS:528:DC%2BD2cXjtFChur8%3D, 14996215

    Article  PubMed  CAS  Google Scholar 

  23. Maleck K, Levine A, Eulgem T, et al. The transcriptome of Arabidosis thaliana during systemic acquired resistance. Nat Genet, 2000, 26: 403–410, 10.1038/82521, 1:CAS:528:DC%2BD3cXptVWgsbk%3D, 11101835

    Article  PubMed  CAS  Google Scholar 

  24. Kawasaki S, Borchert C, Deyholos M, et al. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 2001, 13: 889–905, 10.1105/tpc.13.4.889, 1:CAS:528:DC%2BD3MXjtFajsrw%3D, 11283343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13: 61–72, 10.1105/tpc.13.1.61, 1:CAS:528:DC%2BD3MXjslCrtr0%3D, 11158529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Wang R, Guegler K, Labrie S T, et al. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell, 2000, 12: 1491–1509, 10.1105/tpc.12.8.1491, 1:CAS:528:DC%2BD3cXmsVyjsbs%3D, 10948265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Lian X, Wang S, Zhang J, et al. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol, 2006, 60: 617–631, 10.1007/s11103-005-5441-7, 1:CAS:528:DC%2BD28XktVSgt7k%3D, 16649102

    Article  PubMed  CAS  Google Scholar 

  28. Wasaki J, Yonetani R, Kuroda S, et al. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ, 2003, 26: 1515–1523, 10.1046/j.1365-3040.2003.01074.x, 1:CAS:528:DC%2BD3sXotFyqsr8%3D

    Article  CAS  Google Scholar 

  29. Hammond J P, Bennett M J, Bowen H C, et al. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol, 2003, 132: 578–596, 10.1104/pp.103.020941, 1:CAS:528:DC%2BD3sXkslersbo%3D, 12805589

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Wu P, Ma L, Hou X, et al. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol, 2003, 132: 1260–1271, 10.1104/pp.103.021022, 1:CAS:528:DC%2BD3sXlsFGhtLo%3D, 12857808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Misson J, Raghothama K G, Jain A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 2005, 102: 11934–11939, 10.1073/pnas.0505266102, 1:CAS:528:DC%2BD2MXpsFGgu7w%3D, 16085708

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Yoshida S, Forno D A, Cook J H, et al. Laboratory Manual for Physiological Studies of Rice. Manila: International Rice Research Institute, 1976. 61–67

    Google Scholar 

  33. Duff S M G, Sarath G, Plaxton W C. The role of acid phosphatase in plant phosphorus metabolism. Physiol Planta, 1994, 90: 791–800, 10.1111/j.1399-3054.1994.tb02539.x, 1:CAS:528:DyaK2cXivFCjtbk%3D

    Article  CAS  Google Scholar 

  34. Ueki K. Control of phosphatase release from cultured tobacco cells. Plant Cell Physiol, 1978, 19: 385–392, 1:CAS:528:DyaE1cXkt1SmtLg%3D

    CAS  Google Scholar 

  35. Ascencio J. Acid phosphatase as a diagnostic tool. Commun Soil Sci Plant Anal, 1994, 25: 1553–1564, 10.1080/00103629409369135, 1:CAS:528:DyaK2cXjt1ajsbo%3D

    Article  CAS  Google Scholar 

  36. Goldstein A H, Danon A, Baertlein D A, et al. phosphate inducible metabolism in Lycopersicon esculentum: Excretion of acid phosphatase by tomato and suspension-cultured cells II. Plant Physiol, 1988, 87: 711–715, 10.1104/pp.87.3.711, 1:CAS:528:DyaL1cXltV2ns70%3D, 16666212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Green P J. The ribonucleases of higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45: 421–445, 10.1146/annurev.pp.45.060194.002225, 1:CAS:528:DyaK2MXhslKqsQ%3D%3D

    Article  CAS  Google Scholar 

  38. Nakamura Y, Awai K, Masuda T, et al. A novel phosphatidy lcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem, 2005, 280: 7469–7476, 10.1074/jbc.M408799200, 1:CAS:528:DC%2BD2MXhs1yisrs%3D, 15618226

    Article  PubMed  CAS  Google Scholar 

  39. Frentzen M. Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: Anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol, 2004, 7: 270–276, 10.1016/j.pbi.2004.03.001, 1:CAS:528:DC%2BD2cXjvVams7c%3D, 15134747

    Article  PubMed  CAS  Google Scholar 

  40. Prasad R, Dewerqifosse P, Goffeau A, et al. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet, 1995, 27: 320–329, 10.1007/BF00352101, 1:CAS:528:DyaK2MXkvFOjs7o%3D, 7614555

    Article  PubMed  CAS  Google Scholar 

  41. Smalle J, Vierstra R D. The ubiquitin 26s proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 55: 555–590, 10.1146/annurev.arplant.55.031903.141801, 1:CAS:528:DC%2BD2cXlvFeisb4%3D, 15377232

    Article  PubMed  CAS  Google Scholar 

  42. Cogliatti D H, Clarkson D T. Physiological changes in, and phosphate uptake by potato plants during development of, and recovery from phosphate deficiency. Physiol Plant, 1983, 58: 287–294, 10.1111/j.1399-3054.1983.tb04183.x, 1:CAS:528:DyaL3sXks12lsrs%3D

    Article  CAS  Google Scholar 

  43. Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plant: from soil to cell. Plant Physiol, 1998, 116: 447–453, 10.1104/pp.116.2.447, 1:CAS:528:DyaK1cXht1ajtbc%3D, 9490752

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Drew M C, He C-J, Morgan P W. Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen- or phosphate-starvation in adventitious roots of Zea mays L. Plant Physiol, 1989, 91: 266–271, 10.1104/pp.91.1.266, 1:CAS:528:DyaL1MXmtFert7o%3D, 16667008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XingMing Lian.

Additional information

Supported by the National Key Basic Research and Development Program of China (Grant No. 2005CB120905).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Qiu, X., Li, X. et al. The expression profile of genes in rice roots under low phosphorus stress. SCI CHINA SER C 52, 1055–1064 (2009). https://doi.org/10.1007/s11427-009-0137-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0137-x

Keywords

Navigation