Skip to main content
Log in

Engineering infectious foot-and-mouth disease virus in vivo from a full-length genomic cDNA clone of the A/AKT/58 strain

  • In Memoriam: Professor Ray Wu
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Two full-length genomic cDNA clones, pTA/FMDV and pCA/FMDV, were constructed that contained three point-mutants [A174G and A308G (not present in pTA/FMDV); T1029G] in the genome compared with the wild type A/AKT/58 strain of foot-and-mouth disease virus. These two viruses were rescued by co-transfection of pCA/FMDV with pCT7RNAP, which can express T7 RNA polymerase in BHK-21 cell-lines, or by transfection of the in vitro transcribed RNA. Their biological properties were analyzed for their antigenicity, virulence in suckling-mice (LD50) and growth kinetics in BHK-21 cells. The in vivo rescued viruses showed high pathogenicity for 3-day-old unweaned mice (LD50=10−7.5). However, the in vitro transcribed RNA derived from pTA/FMDV had lower pathogenicity for suckling-mice (LD50=10−6), and the in vivo transcribed RNA recovered from pCA/FMDV co-transfected with pCT7RNAP showed no significant differences from the wild type virus. These data showed that recovery of the infectious foot-and-mouth disease virus directly from the use of in vivo techniques was better than from in vitro methods. Furthermore, the reverse genetic procedure technique was simplified to a faster one-step procedure based on co-transfection with pCT7RNAP. These results suggest that in vivo RNA transcripts may be more valuable for engineering recombinant foot-and-mouth disease virus than in vitro RNA transcripts, and may contribute to further understanding of the biological properties, such as replication, maturation and quasispecies, of the foot-and-mouth disease virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sobrino F, Domingo E. Foot-and-mouth disease. London: Horizon Press, 2004. 1–18

    Google Scholar 

  2. Thomson G R, Bastos A D S. Foot-and-mouth disease. In: Coetzer J A W, Tustin R C, eds. Infectious Diseases of Livestock. Cape Town: Oxford University Press, 2004. 1323–1365

    Google Scholar 

  3. Rueckert R R. Picornaviridae and their replication. In: Fields B N, Knipe D M, eds. Fields Virology. New York: Raven Press, 1990. 507–548

    Google Scholar 

  4. Rueckert R R. Picornaviridae: the viruses and their replication. In: Fields B N, Knipe D M, Howley P M, eds. Fields Virology. New York: Raven Press, 1996. 609–654

    Google Scholar 

  5. Grubman M, Baxt B. Foot-and-mouth disease. Clin Microbiol Rev, 2004, 17: 465–493 15084510, 10.1128/CMR.17.2.465-493.2004, 1:CAS:528:DC%2BD2cXktl2isrg%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Mason P W, Grubman M J, Baxt B. Molecular basis of pathogenesis of FMDV. Virus Res, 2003, 91: 9–32 12527435, 10.1016/S0168-1702(02)00257-5, 1:CAS:528:DC%2BD3sXjtF2ntg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  7. Ryan M D, Belsham G J, King A M Q. Specificity of enzyme-substrate interactions in foot-and-mouth disease virus polyprotein processing. J Virol, 1989: 173: 35–45 10.1016/0042-6822(89)90219-5, 1:CAS:528:DyaK3cXhsFCiurs%3D

    Article  CAS  Google Scholar 

  8. Brown F, Newman J F E, Scott J, et al. Poly(C) in animal virus RNAs. Nature, 1974, 251: 342–344 4372534, 10.1038/251342a0, 1:CAS:528:DyaE2MXltlyksw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  9. Mason P W, Bezborodova S V, Henry T M. Identification and characterization of a cis-acting replication element (cre) adjacent to the internal ribosome entry site of foot-and-mouth disease viral. J Virol, 2002, 76: 9686–9694 12208947, 10.1128/JVI.76.19.9686-9694.2002, 1:CAS:528:DC%2BD38XntFGks78%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Belsham G J, Brangwyn J K. A region of the 5′ noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells: involvement with the role of L protease in translational control. J Virol, 1990, 64: 5389–5395 2170677, 1:CAS:528:DyaK3cXmt1Ggt70%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Clarke B E, Brown A L, Currey K M, et al. Potential secondary and tertiary structure in the genomic RNA of foot-and-mouth disease virus. Nucleic Acid Res, 1987, 15: 7067–7079 2821491, 10.1093/nar/15.17.7067, 1:CAS:528:DyaL2sXls12ksLo%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Kuhn R, Luz N, Beck E. Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. J Virol, 1990, 64: 4625–4631 2168956, 1:STN:280:DyaK3czns1Cisw%3D%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Newton S E, Carroll A R, Campbell R O, et al. The sequence of foot-and-mouth disease virus RNA to the 5′ side of the poly(C) tract. Gene, 1985, 40: 331–336 3007298, 10.1016/0378-1119(85)90057-5, 1:CAS:528:DyaL28Xhs1aksrc%3D

    Article  PubMed  CAS  Google Scholar 

  14. Liu G Q, Liu Z X, Xie Q G, et al. Generation of an infectious cDNA clone of an FMDV strain isolated from swine. Virus Res, 2004, 104: 157–164 15246653, 10.1016/j.virusres.2004.04.002, 1:CAS:528:DC%2BD2cXls1ajtrw%3D

    Article  PubMed  CAS  Google Scholar 

  15. Rieder E, Bunch T, Brown F, et al. Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice. J Virol, 1993, 67: 5139–5145 8394441, 1:CAS:528:DyaK3sXmt1Wgtbc%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Zibert A, Maass G, Strebel K, et al. Infectious foot-and-mouth disease virus derived from a clone full-length cDNA. J Virol, 1990, 64: 2467–2473 2159523, 1:CAS:528:DyaK3cXktFyru78%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  17. van Rensburg H G, Henry T M, Mason P W. Studies of genetically defined chimeras of a European type A virus and a South African Territories type 2 virus reveal growth determinants for foot-and-mouth disease virus. J Gen Virol, 2004, 85: 61–68 14718620, 10.1099/vir.0.19509-0

    Article  PubMed  Google Scholar 

  18. Leippert M, Beck E, Weiland F, et al. Point mutations with the beta G-beta H loop of foot-and-mouth virus O1K affect virus attachment to target cells. J Virol, 1997, 71: 1046–1051 8995624, 1:CAS:528:DyaK2sXls1entA%3D%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Storey P, Theron J, Maree F F, et al. A second RGD motif in the 1D capsid protein of a SAT1 type foot-and-mouth disease virus field isolate is not essential for attachment to target cells. Virus Res, 2007, 124: 184–192 17161881, 10.1016/j.virusres.2006.11.003, 1:CAS:528:DC%2BD2sXhs1Cjurg%3D

    Article  PubMed  CAS  Google Scholar 

  20. Piccone M E, Zellner M, Kumosinski T F, et al. Identification of the active-site residues of the L proteinase of foot-and-mouth disease virus. J Virol, 1995, 69: 4950–4956 7609064, 1:CAS:528:DyaK2MXmvFWgsLk%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Sá-Carvalho D, Rieder E, Baxt B, et al. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol, 1997, 71: 5115–5123 9188578

    PubMed Central  PubMed  Google Scholar 

  22. Baranowski E, Sevilla N, Verdaguer N, et al. Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J Virol, 1998, 72: 6362–6372 9658076, 1:CAS:528:DyaK1cXks1equ78%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Baranowski E, Molina N, Núñez J I, et al. Recovery of infectious foot-and-mouth disease virus from suckling mice after direct inoculation with in vitro-transcribed RNA. J Virol, 2003, 77: 11290–11295 14512578, 10.1128/JVI.77.20.11290-11295.2003, 1:CAS:528:DC%2BD3sXotFOnsrg%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Knowles N J, Davies P R, Henry T, et al. Emergence in Asia of foot-and-mouth disease viruses with altered host range: characterization of alterations in the 3A protein. J Virol, 2001, 75: 1551–1556 11152528, 10.1128/JVI.75.3.1551-1556.2001, 1:CAS:528:DC%2BD3MXkvVGjug%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Nunez J I, Baranowski E, Molina N, et al. A single amino acid substitution in nonstructural protein 3A can mediate adaptation of foot-and-mouth disease virus to the guinea pig. J Virol, 2001, 75: 3977–3983 11264387, 10.1128/JVI.75.8.3977-3983.2001, 1:CAS:528:DC%2BD3MXisVSmsbw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. McInerney G M, King A M, Ross-Smith N, et al. Replication-competent foot-and-mouth disease virus RNAs lacking capsid coding sequences. J Gen Virol, 2000, 81: 1699–1702 10859374, 1:CAS:528:DC%2BD3cXks12iu7w%3D

    Article  PubMed  CAS  Google Scholar 

  27. Beard C W, Mason P W. Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus. J Virol, 2000, 74: 987–991 10623761, 10.1128/JVI.74.2.987-991.2000, 1:CAS:528:DC%2BD3cXkt1Crtw%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Domingo E, Biebricher C, Eigen M, et al. Quasispecies and RNA Virus Evolution: Principles and Consequences. Austin: Landes Bioscience, 2001. 173

    Google Scholar 

  29. Smith D B, McAllister J, Casino C, et al. Virus ‘quasispecies’: making a mountain out of a molehill? J Gen Virol, 1997, 78: 1511–1519 9225023, 1:CAS:528:DyaK2sXktlWltrc%3D

    Article  PubMed  CAS  Google Scholar 

  30. Zheng H X, Liu X T, Shang Y J, et al. Infective viruses produced from full-length complementary DNA of swine vesicular disease viruses HK/70 strain. Chin Sci Bull, 2006, 51: 2072–2078 10.1007/s11434-006-2095-z, 1:CAS:528:DC%2BD28Xps1Wjtrw%3D

    Article  CAS  Google Scholar 

  31. Boyer J C, Haenni A L. Infectious transcripts and cDNA clones of RNA viruses. Virology, 1994, 198: 415–426 8291226, 10.1006/viro.1994.1053, 1:CAS:528:DyaK2cXhtlSqs78%3D

    Article  PubMed  CAS  Google Scholar 

  32. Liu G Q, Liu Z X, Xie Q G, et al. Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA of OH/CHA/99. Chin Sci Bull, 2004, 49: 1137–1141 10.1360/03wc0567, 1:CAS:528:DC%2BD2cXmvVCqtbw%3D

    Article  CAS  Google Scholar 

  33. Reed L J, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg, 1938, 27: 493–497

    Google Scholar 

  34. van Gennip H G P, van Rijn P A, Widjojoatmodjo M N, et al. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase. J Virol Meth, 1999, 78: 117–128 10.1016/S0166-0934(98)00171-2

    Article  Google Scholar 

  35. Zimmermann A, Botta A, Arnold G, et al. The poly(C) region affects progression of encephalomyocarditis virus infection in Langerhans’ islets but not in the myocardium. J Virol, 1997, 71: 4145–4149 9094698, 1:CAS:528:DyaK2sXisFWnsbY%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Osorio J E, Martin L R, Palmenberg A C. The immunogenic and pathogenic potential of short poly(C) tract Mengo viruses. Virology, 1996, 223: 344–350 8806569, 10.1006/viro.1996.0485, 1:CAS:528:DyaK28XlslSit7o%3D

    Article  PubMed  CAS  Google Scholar 

  37. Taniguchi T, Palmieri M, Weissman C. Qβ DNA-containing hybrid plasmids giving rise to Qβ phage formation in the bacterial host. Nature, 1978, 274: 223–228 355887, 10.1038/274223a0, 1:CAS:528:DyaE1MXhvV2nsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  38. Racaniello V R, Baltimore B. Cloned poliovirus complementary DNA is infectious cells. Science, 1981, 214: 916–919 6272391, 10.1126/science.6272391, 1:CAS:528:DyaL38XhtlGj

    Article  PubMed  CAS  Google Scholar 

  39. Cohen J I, Ticehurst J R, Feinstone S M, et al. Hepatitis A virus cDNA and its RNA transcripts are infectious in cell culture. J Virol, 1987, 61: 3035–3039 3041024, 1:CAS:528:DyaL2sXls12qsbo%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Kandolf R, Hofschneider P H. Molecular cloning of the genome of a cardiotropic coxsackie B3 virus: full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc Natl Acad Sci USA, 1985, 82: 4818–4822 2410905, 10.1073/pnas.82.14.4818, 1:CAS:528:DyaL2MXkvF2ksLs%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Martino T A, Tellier R, Petric M, et al. The complete consensus sequence of coxsackievirus B6 and generation of infectious clones by long RT-PCR. Virus Res, 1999, 64: 77–86 10500285, 10.1016/S0168-1702(99)00081-7, 1:CAS:528:DyaK1MXmt1emtbc%3D

    Article  PubMed  CAS  Google Scholar 

  42. Duechler M, Skern T, Blaas D. Short communications: human rhinovirus serotype 2: in vitro synthesis of an infectious RNA. Virology, 1989, 168: 159–161 2535899, 10.1016/0042-6822(89)90414-5, 1:CAS:528:DyaL1MXntVWrtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  43. Zimmermann A, Nelsen-Salz B, Kruppenbacher J P, et al. The complete nucleotide sequence and construction of an infectious cDNA clone of a highly virulent encephalomyocarditis virus. Virology, 1994, 203: 366–372 8053159, 10.1006/viro.1994.1495, 1:CAS:528:DyaK2cXmvFCju74%3D

    Article  PubMed  CAS  Google Scholar 

  44. Hahn H, Palmenberg A C. Encephalomyocarditis viruses with short poly(C) tracts are more virulent than their mengovirus counterparts. J Virol, 1995, 69: 2697–2699 7884926, 1:CAS:528:DyaK2MXksVSlsrc%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Domingo E, Holland J J. Mutation rates and rapid evolution of RNA viruses. In: Morse S S, ed. Evolutionary Biology of Viruses. New York: Raven Press, 1994. 161–184

    Google Scholar 

  46. Ramirez B C, Barbier P, Seron K, et al. Molecular mechanisms of point mutations in RNA viruses. In: Gibbs A J, Calisher C H, García-Arenal F, eds. Molecular Basis of Viral Evolution. Cambridge: Cambridge University Press, 1995. 105–118

    Chapter  Google Scholar 

  47. Deng G, Wu R. An improved procedure for utilizing terminal transferase to add homopolymers to the 3′ termini of DNA. Nucleic Acids Res, 1981, 9: 4173–4188 6272197, 10.1093/nar/9.16.4173, 1:CAS:528:DyaL3MXlsVKmu7g%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Grubman M J, Baxt B, Bachrach H L. Foot-and-mouth disease virion RNA: studies on the relation between the length of its 3′-poly(A) segment and infectivity. Virology, 1979, 97: 22–31 224578, 10.1016/0042-6822(79)90369-6, 1:CAS:528:DyaE1MXlsFCiurs%3D

    Article  PubMed  CAS  Google Scholar 

  49. Klump W M, Bergmann I, Müler B C, et al. Complete nucleotide sequence of infectious coxsackievirus B3 cDNA: two initial 5′ uridine residues are regained during plus-strand RNA synthesis. J Virol, 1990, 64: 1573–1583 2157045, 1:CAS:528:DyaK3MXit1aht7k%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Garcin D, Pelet T, Calain P, et al. A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J, 1995, 14: 6087–6094 8557028, 1:CAS:528:DyaK28XjtVKjtw%3D%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Fuerst T R, Niles E G, Studier F W, et al. Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. PNAS, 1986, 83: 8122–8126 3095828, 10.1073/pnas.83.21.8122, 1:CAS:528:DyaL2sXhtlak

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Britton P, Green P, Kottier S, et al. Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. J Gen Virol, 1996, 77: 963–967 8609493, 10.1099/0022-1317-77-5-963, 1:CAS:528:DyaK28Xis1Sls74%3D

    Article  PubMed  CAS  Google Scholar 

  53. Schnell M J, Mebatsion T, Conzelmann K K. Infectious rabies viruses from cloned cDNA. EMBO J, 1994, 13: 4195–4203 7925265, 1:CAS:528:DyaK2cXmvFymu74%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Yap C C, Ishii K, Aoki Y, et al. A hybrid baculovirus-T7 RNA polymerase system for recovery of an infectious virus from cDNA. Virology, 1997, 231: 192–200 9168881, 10.1006/viro.1997.8537, 1:CAS:528:DyaK2sXjt1Omtr8%3D

    Article  PubMed  CAS  Google Scholar 

  55. Dubensky T W Jr, Driver D A, Polo J M. Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J Virol, 1996, 70: 508–519 8523564, 1:CAS:528:DyaK2MXpvFSmsb0%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Hoffmann E M, Neumann G, Kawaoka Y, et al. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA, 2000, 97: 6108–6113 10801978, 10.1073/pnas.100133697, 1:CAS:528:DC%2BD3cXjvFartLk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Qi X L, Gao Y L, Gao H L, et al. An improved method for infectious bursal disease virus rescue using RNA polymerase II system. J Virol Meth, 2007, 142: 81–88 10.1016/j.jviromet.2007.01.021, 1:CAS:528:DC%2BD2sXksFWlur4%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XingWen Bai or ZaiXin Liu.

Additional information

Supported by the National Key Basic Research Program of China (Grant No. 2005CB523201) and National High-Tech Research and Development Program of China (Grant No. 2006BAD06A03)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, X., Li, P., Cao, Y. et al. Engineering infectious foot-and-mouth disease virus in vivo from a full-length genomic cDNA clone of the A/AKT/58 strain. SCI CHINA SER C 52, 155–162 (2009). https://doi.org/10.1007/s11427-009-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0007-6

Keywords

Navigation