Skip to main content
Log in

Prediction of PK-specific phosphorylation site based on information entropy

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Phosphorylation is a crucial way to control the activity of proteins in many eukaryotic organisms in vivo. Experimental methods to determine phosphorylation sites in substrates are usually restricted by the in vitro condition of enzymes and very intensive in time and labor. Although some in silico methods and web servers have been introduced for automatic detection of phosphorylation sites, sophisticated methods are still in urgent demand to further improve prediction performances. Protein primary sequences can help predict phosphorylation sites catalyzed by different protein kinase and most computational approaches use a short local peptide to make prediction. However, the useful information may be lost if only the conservative residues that are not close to the phosphorylation site are considered in prediction, which would hamper the prediction results. A novel prediction method named IEPP (Information-Entropy based Phosphorylation Prediction) is presented in this paper for automatic detection of potential phosphorylation sites. In prediction, the sites around the phosphorylation sites are selected or excluded by their entropy values. The algorithm was compared with other methods such as GSP and PPSP on the ABL, MAPK and PKA PK families. The superior prediction accuracies were obtained in various measurements such as sensitivity (Sn) and specificity (Sp). Furthermore, compared with some online prediction web servers on the new discovered phosphorylation sites, IEPP also yielded the best performance. IEPP is another useful computational resource for identification of PK-specific phosphorylation sites and it also has the advantages of simpleness, efficiency and convenience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lou Y, Yao J, Zereshki A, et al. NEK2A interacts with MAD1 and possibly functions as a novel integrator of the spindle checkpoint signaling. J Biol Chem, 2004, 279: 20049–20057

    Article  PubMed  CAS  Google Scholar 

  2. Meijer A J, Dubbelhuis P F. Amino acid signalling and the integration of metabolism. Biochem Biophys Res Commun, 2004, 313: 397–403

    Article  PubMed  CAS  Google Scholar 

  3. Manning G, Whyte D B, Martinez R, et al. The protein kinase complement of the human genome. Science, 2002, 298: 1912–1934

    Article  PubMed  CAS  Google Scholar 

  4. Caenepeel S, Charydczak G, Sudarsanam S, et al. The mouse kinome: Discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci, 2004, 101: 11707–11712

    Article  PubMed  CAS  Google Scholar 

  5. Kraft C, Herzog F, Gieffers C, et al. Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO, 2003, 22: 6598–6609

    Article  CAS  Google Scholar 

  6. Rychlewski L, Kschischo M, Dong L, et al. Target specificity analysis of the Abl kinase using peptide microarray data. J Mol Biol, 2004, 336: 307–311

    Article  PubMed  CAS  Google Scholar 

  7. Knight Z A, Schilling B, Row R H, et al. Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat. Biotechnol., 2003, 21: 1047–1054. Erratum in: Nat. Biotechnol., 2003, 21, 1396

    Article  PubMed  CAS  Google Scholar 

  8. Ballif B A, Villen J, Beausoleil S A, et al. Gygi. Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics, 2004, 3: 1093–1101

    Article  PubMed  CAS  Google Scholar 

  9. Beausoleil S A, Jedrychowski M, Schwartz D, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci, 2004, 101: 12130–12135

    Article  PubMed  CAS  Google Scholar 

  10. Kreegipuu A, Blom N, Brunak S. PhosphoBase: A database of phosphorylation sites. Release 2.0. Nucleic Acids Res, 1999, 27: 237–239

    Article  PubMed  CAS  Google Scholar 

  11. Blom N, Sicheritz-Ponten T, Gupta R, et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 2004, 4: 1633–1649

    Article  PubMed  CAS  Google Scholar 

  12. Obenauer J C, Cantley L C, Yaffe M B. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res, 2003, 31: 3635–3641

    Article  PubMed  CAS  Google Scholar 

  13. Huang H D, Lee T Y, Tzeng S W, et al. KinasePhos: A web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res, 2005, 33 (Web Server issue): 226–229

    Article  Google Scholar 

  14. Zhou F F, Xue Y, Chen G L, et al. GPS: A novel group-based phosphorylation predicting and scoring method. Biochem Biophys Res Commun, 2004, 325: 1443–1448

    Article  PubMed  CAS  Google Scholar 

  15. Xue Y, Li A, Wang L R, et al. PPSP: Prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinformatics, 2006, 7: 163–173

    Article  PubMed  Google Scholar 

  16. Kim J H, Lee J, Oh B, et al. Prediction of phosphorylation sites using SVMs. Bioinformatics, 2004, 20: 3179–3184

    Article  PubMed  CAS  Google Scholar 

  17. Biondi R M, Nebreda A R. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J, 2003, 372(Pt 1): 1–13

    Article  PubMed  CAS  Google Scholar 

  18. Holland P M, Cooper J A. Protein modification: Docking sites for kinases. Curr Biol, 1999, 9(9): R329–31

    Article  PubMed  CAS  Google Scholar 

  19. Uhlik M T, Temple B, Bencharit S, et al. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J Mol Biol, 2005, 345(1): 1–20

    Article  PubMed  CAS  Google Scholar 

  20. Yaffe M B, Elia A E. Phosphoserine/threonine-binding domains. Curr Opin Cell Biol, 2001, 13(2): 131–138

    Article  PubMed  CAS  Google Scholar 

  21. Yaffe M B, Leparc G G, Lai J, et al. A motifbased profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol, 2001, 19(4): 348–353

    Article  PubMed  CAS  Google Scholar 

  22. Yaffe M B, Smerdon S J. The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. Annu Rev Biophys Biomol Struct, 2004, 33: 225–244

    Article  PubMed  CAS  Google Scholar 

  23. Diella F, Cameron S, Gemund C, et al. Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics, 2004, 5(1): 79–83

    Article  PubMed  Google Scholar 

  24. Chen H, Xue Y, Huang N, Yao X, Sun Z. MeMo: a web tool for prediction of protein methylation modifications. Nucleic Acids Res, 2006, 34 (Web Server issue): W249–253

    Article  PubMed  CAS  Google Scholar 

  25. Hutti J E, Jarrell E T, Chang J D, et al. A rapid method for determining protein kinase phosphorylation specificity. Nat Methods, 2004, 1(1): 27–29

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang CunXin.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10574009, 30400087 and 20773006), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20040005013) and Beijing Excellent Person Sustentation Fund (No. 20061D0501500192)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Li, C., Chen, W. et al. Prediction of PK-specific phosphorylation site based on information entropy. Sci. China Ser. C-Life Sci. 51, 12–20 (2008). https://doi.org/10.1007/s11427-008-0012-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0012-1

Keywords

Navigation