Skip to main content
Log in

Heat shock response and mammal adaptation to high elevation (hypoxia)

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The mammal’s high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Westem blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2)From low elevation to high elevation (hypoxia induction): The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells’ normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCarry T J, Lindquist S. Inhibition of heat shock protein synthesis by heat-inducible antisense RNA. Proc Natl Acad Sci USA, 1986, 83(2): 399–403

    Article  Google Scholar 

  2. Ritossa F. A new puffing pattern induced by temperature shock and DNA in Drosophila Experientia, 1962, 13(2): 571–573

    Google Scholar 

  3. Tissieres A, Mitchell H K, Tracy V M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Molec Biol, 1974, 84(1): 389–398

    Article  PubMed  CAS  Google Scholar 

  4. Ashbumer M, Bonner J J. The induction of gene activity in drosophila by heat shock. Cell, 1979, 17(2): 241–254

    Article  Google Scholar 

  5. Schoeniger L O, Audreonwi K A, Ott G R, et al. Induction of heat shock expression in postis chemic pig liver depends on superoxide generation. Gastroenterology, 1994,106(1):177–184

    PubMed  CAS  Google Scholar 

  6. Li G C. Thermal response of rat fibroblasts stably transfect with the human 70 KD heat shock protein-encoding gene. Proc Natl Acad Sci USA, 1991, 76:598–601

    Google Scholar 

  7. Riabowol K T. Heat shock is lethal to fibroblasts microinjected with antibodies against HSP70. Science, 1998, 242:433–436

    Google Scholar 

  8. Karmazyn M. Acquisition and decay of heat shock-enhanced posits chemic ventricular recovery. Am J Physiol, 1990, 259: H424–H431

    PubMed  CAS  Google Scholar 

  9. Huang Z. The bone mucous membrane cell through increases the hot shock protein the synthesis to have the cell protective function. Gastroenterology, 1991, 101:161

    Google Scholar 

  10. Chen X M, Luo B D, Zou F. Hot shock protein application prospect. Overseas Med Physiol Pathol, 1999, 19(6): 5

    CAS  Google Scholar 

  11. Bukau B, Harwich A L. The Hsp70 and Hsp60 chaperone machines. Cell, 1998, 92(3): 351–366

    Article  PubMed  CAS  Google Scholar 

  12. Terada K, Mori M. Mitochondrial protein import in animals. Biochem Biophys Acta, 1998, 1403(1): 12–17

    Article  PubMed  Google Scholar 

  13. Rossow J, Marrse A C, Krainer E, et al. Mitochondrial protein import: Biochemical and genetic evidence for inter-action of matrix Hsp70 and the inner membrane proteins mim44. J Cell Biol, 1994, 127(6): 1547–1556

    Article  Google Scholar 

  14. Zou Y, David J, Crowley, et al. Involvement of molecular chaperones in nucleotide excision repair. J Biol Chem, 1998, 273: 12887–12892

    Article  PubMed  CAS  Google Scholar 

  15. Chu W Z, Cao Q Y. Relation between expression of Hsp 70 and apoptosis after reperfusion of focal cerebral ischemia in rats. J Binzhou Med College, 2000, 23(6): 525–528

    Google Scholar 

  16. Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol, 1999, (61): 243–282

  17. Suzanne L R, Susan L. Hsp90 as a capacitor for morphological evolution. Nature, 1998, (396):336–342

  18. Feder M E, Block B A. On the future of animal physiological ecology. Funct Ecol, 1991, 5: 136–144

    Article  Google Scholar 

  19. Vsincent S, Lu X, et al. Evidence for an epigenetic mechanism by which, Hsp90 acts as a capacitor for morphological evoluation. Nature Genetics, 2003, 35(1): 70–75

    Google Scholar 

  20. Lerman D N, Michaela Helin A B. Modification of heat shock gene expression in drosophila melanogaster populations via transposable elements. Mol Biol Evol, 2003, (20): 135–144

  21. Wang K Z. The hot shock protein expression is the sea non-vertebrate suffers the target which the environment forces. Biol Technol Notifies, 2003, 1: 54

    Google Scholar 

  22. Ramaglia V, Buck L T. Time dependent expression of heat shock proteins 70 and 90 in tissues of the anoxic western painted turtle. J Exp Biol, 2004, 207: 3775–3784

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Y B. Human and Plateau. Xining: Qinghai People’s Publish Agency, 1996, 290–296

  24. Krebs R A, Feder M E. Tissue-specific variation in Hsp70 expression and thermal damage in Drosophila melanogaster larvae. J Exp Biol, 1997, 200:2007–2015

    PubMed  CAS  Google Scholar 

  25. Place S P, Zippay M L, Hofmann G E. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible Hsp70 gene in Antarctic notothenioid fishes. Am J Physiol Regul Integr Comp Physiol, 2004, (287): R429–R436

  26. Tomanek L, Somero G N. Some Interspecific-and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. J Exp Biol, 2002, 205: 677–685

    PubMed  CAS  Google Scholar 

  27. Xu C S, Xia M, Lu A L, et al. Hot shock protein, protein hydrolytyic enzyme and phosphatase in big mouse liver regeneration content and active change. Physiol J, 1999, 51(5): 548–556

    CAS  Google Scholar 

  28. Neuhoff V, Philipp K, Zimmer H G,et al. A simple versatile sensitive and volume-independent method for quantitative protein determination which is independent of other external influence. Physiol Chem, 1979, 360(11): 1657–1670

    CAS  Google Scholar 

  29. Laemmli U K. Cleavage of structural proteins during the assembly of the head bacteriophageT4. Nature, 1970, 227(259): 680–685

    Article  PubMed  CAS  Google Scholar 

  30. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedue and some applications. Proc Natl Acad Sci USA, 1979, 76(9): 4350–4354

    Article  PubMed  CAS  Google Scholar 

  31. NeSton C R, Graham A PCR. 2nd.ed (Introduction to Biotechniques). Oxford: Bios Scientific Publishers Limited, 1997

    Google Scholar 

  32. Sambrook J, Fritsh E F, Maniatist T. Molecular Cloning: a Laboratory Manual. 2nd.ed. New York: Cold Spring Harbor Laboratory Press, 1989

    Google Scholar 

  33. Bao E D, Sultan K R, Nowak B, et al. Transportation should stir up in the pig skeletal muscle to be hot should stir up protein HSP70 and the HSP90 family’s expression. J Nanjing Agricultural College (in Chinese), 2001, 24(1): 81–84

    CAS  Google Scholar 

  34. Xiong Y L, et al. The high temperature is hot to the big mouse should stir up the protein the influence. Magazine of China Aeroastromedicine (in Chinese), 1995, 6(4): 202–204.

    Google Scholar 

  35. Wang F, Zhao F J, Gao J S. HSP70 the high expression to the K562 cell hot endurance influence. Chinese Public Health (in Chinese), 2000, 16(7): 687–688

    Google Scholar 

  36. Ling M S. The molecular companion HSP70 research progresses. Overseas Medicine Molecular Biology Fascicle (in Chinese), 1993, 15(5): 227–230

    Google Scholar 

  37. Baler R, Dah G, Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation if heat shock transcription factor HSF1. Mol Cell Biol, 1993, 13(6): 2486–2491

    PubMed  CAS  Google Scholar 

  38. Cheng Y Q. The hot shock protein. Overseas Med Mol Biol Fascicle, 1988,4(3): 29–31

    Google Scholar 

  39. Storti R V, Scott M P, Rich A, et al. Translational control of protein synthesis in response to heat shock in melanogaster cells. Cell, 1980, 22(3): 825–834

    Article  PubMed  CAS  Google Scholar 

  40. Lerman D N, Feder M E. Laboratory selection at different temperatures modifies heat-shock transcription factor (HSF) activation in Drosophila melanogaster. J Exp Biol, 2001, 204(2): 315–323

    PubMed  CAS  Google Scholar 

  41. Lindquist S. Regulation of protein synthesis during heat shock. Nature, 1981, 293: 311–314

    Article  PubMed  CAS  Google Scholar 

  42. Petersen R, Lindquist S. The Drosophila Hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene, 1988, 72(1–2): 161–168

    Article  PubMed  CAS  Google Scholar 

  43. McGarry T J, Lindquist S. The preferential translation of Drosophila Hsp70mRNA acquires sequences in the translated. Cell, 1985, 42(3): 903–911

    Article  PubMed  CAS  Google Scholar 

  44. Srivastava P K, Amato RJ. Heat shock proteins: the ’swiss Army Knife’ vaccines against cancers and infectious agents. Vaccine, 2001, 21(17–19): 2590–2597

    Article  Google Scholar 

  45. Suzanne L R, Susan L. Hsp90 as a capacitor for morphological evolution. Nature, 1998, (396): 336–342

  46. Emily Stenseng, Caren E Braby, George N Somero. Evolutionary and Acclimation-Induced Variation in the Thermal Limits of Heart Function in Congeneric Marine Snails (Genus Tegula): Implications for Vertical Zonation. Biol Bull, 2005, (208): 138–144

  47. Feder M E. Ecological and evolutionary physiology of stress proteins and the stress response: the Drosophila melanogaster model. In: Johnston I A, Bennett A F, eds. Animals and Temperature: Phenotypic and Evolutionary Adaptation. Cambridge: Cambridge University Press, 1996. 79–102

    Google Scholar 

  48. Feder M E, Bennett A F, Huey R B. Evolutionary physiology. Ann Rev Ecol Syst, 2000, 31: 315–341

    Article  Google Scholar 

  49. Feder M E, Krebs R A. Nature and genetic engineering of thermotolerance in Drosophila melanogaster, Am Zool, 1998, (38): 503–517

  50. Garbuz D, Evgenev M B, Feder M E. Evolution of thermotolerance and the heat-shock response: evidence from inter/intraspecific comparison and interspecific hybridization in the virilis species group of Drosophila I. Thermal phenotype. J Exp Biol, 2003, (206): 2399–2408

  51. Lerman D N, Feder M E. Naturally Occurring Transposable Elements Disrupt Hsp70 Promoter Function in Drosophila melanogaster. Mol Biol Evol, 2005, 22(3): 776–783

    Article  PubMed  CAS  Google Scholar 

  52. Feder M E, Cartano N V, Milos L, Krebs R A, Lindquist S L. Effect of engineering Hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster. J Exp Biol, 1996, 199(8): 1837–1844

    PubMed  CAS  Google Scholar 

  53. Feder M E. Engineering candidate genes in studies of adaptation: the heat-shock protein Hsp70 in Drosophila melanogaster, Am Nat, 1999a, 154: S55–S66

    Article  Google Scholar 

  54. Feder M E. Organismal, ecological and evolutionary aspects of heat-shock proteins and the stress response: established conclusions and unresolved issues. Am Zool, 1999b, 39: 857–864

    Google Scholar 

  55. Lar Tomanek, Eric Sanford. Heat Shock Protein 70 (Hsp70) as a biochemical stress indicator: an experimental field test in two congeneric intertidal gastropods (Genus: Tegula). Biol. Bull, 2003, 205: 276–284.

    Google Scholar 

  56. Cai L. Chinese Yak (in Chinese). Beijing: Agricultural Publishing House, 1992

    Google Scholar 

  57. The Chinese Yak Study Compiling Committee. Chinese Yak Study (in Chinese). Chengdu: Sichuan Science and Technology Press, 1989

    Google Scholar 

  58. Chen Z H, et al. The Tibet yak and the oxinherit the multi-state property research. Southwest Nat College J (Natural Sciences Version)(in Chinese), 1999, 3(3): 110–115S

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Xiaolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Xu, C., Wang, X. et al. Heat shock response and mammal adaptation to high elevation (hypoxia). SCI CHINA SER C 49, 500–512 (2006). https://doi.org/10.1007/s11427-006-2027-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-006-2027-9

Keywords

Navigation