Skip to main content
Log in

The study of neighboring nucleotide composition and transition/transversion bias

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Base substitution is one of the raw fuels that produce genetic variation and drive evolution. Recent studies have shown that the genome components affect mutation patterns to some extent. In order to infer the correlation between the Transition/Transversion ratio (Ts/Tv) and the number of immediately adjacent A&T nucleotides, we investigated 3611007 Oryza sativa SNPs (including 45462 coding SNPs, and 242811 intronic SNPs) and 32019 Arabidopsis SNPs. The results show that Ts/Tv is negatively correlated with the number of immediately adjacent A&T in O. Sativa and Arabidopsis. We further calculated AT2 (the number of SNPs whose immediately adjacent nucleotides are either A or T) and AT0 (the number of SNPs whose immediately adjacent nucleotides are either C or G) for all 6 types of SNPs. C/G SNP of O. sativa and Arabidopsis has the highest AT2/AT0, which denotes C/G SNP may be influenced by the adjacent A&T nucleotides mostly. For SNPs in O. sativa, the neighboring effect of A&T nucleotides is limited to 2 nucleotides on both sides; for SNPs in Arabidopsis, the effect extends no more than 4 nucleotides on both sides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins D W, Jukes T H. Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics, 1994, 20(3): 386–396

    Article  PubMed  CAS  Google Scholar 

  2. Brown W M, Prager E M, Wang A, Wilson A C. Mitochondrial DNA sequences of primates: Tempo and mode of evolution. J Mol Evol, 1982, 18(4): 225–239

    Article  PubMed  CAS  Google Scholar 

  3. Gojobori T, Li W H, Graur D. Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol, 1982, 18(5): 360–369

    Article  PubMed  CAS  Google Scholar 

  4. Li W H, Wu C I, Luo C C. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J Mol Evol, 1984, 21(1): 58–71

    Article  PubMed  CAS  Google Scholar 

  5. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 1980, 16(2): 111–120

    Article  PubMed  CAS  Google Scholar 

  6. Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987

    Google Scholar 

  7. Swofford D L, Olsen G J. Phylogeny reconstruction. In: Hillis D C, ed. Molecular Systematics. Sunderland: Sinauer Associates Inc., 1990. 411–501

    Google Scholar 

  8. Morton B R. Neighboring base composition and transversion/transition bias in a comparison of rice and maize chloroplast noncoding regions. Proc Natl Acad Sci USA, 1995, 92(21): 9717–9721

    Article  PubMed  CAS  Google Scholar 

  9. Morton B R. The Influence of neighboring bases composition on substitutions in plant chloroplast coding sequences. Mol Biol Evol, 1997, 14(2): 189–194

    CAS  Google Scholar 

  10. Morton B R. The role of context-dependent mutations in generating compositional and codon usage bias in grass chloroplast DNA. J Mol Evol, 2003, 56(5): 616–629

    Article  PubMed  CAS  Google Scholar 

  11. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408(6814): 796–815

    Article  Google Scholar 

  12. Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565): 79–92

    Article  PubMed  CAS  Google Scholar 

  13. Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W L, Chen L, Cooper B, Park S, Wood T C, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296(5565): 92–100

    Article  PubMed  CAS  Google Scholar 

  14. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GK, Yang H. The genomes of Oryza sativa: A history of duplications. PLoS Biol, 2005, 3(2): e38

    Article  PubMed  Google Scholar 

  15. Zhao W, Wang J, He X, Huang X, Jiao Y, Dai M, Wei S, Fu J, Chen Y, Ren X, Zhang Y, Ni P, Zhang J, Li S, Wang J, Wong G K, Zhao H, Yu J, Yang H, Wang J. BGI-RIS: An integrated information resource and comparative analysis workbench for rice genontics. Nucleic Acids Res, 2004, 32(Database issue): D377–382

    Article  PubMed  CAS  Google Scholar 

  16. Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 2002, 129(2): 440–450

    Article  PubMed  CAS  Google Scholar 

  17. Kent W J. BLAT—The BLAST-like alignment tool. Genome Res, 2002, 12(4): 656–664

    Article  PubMed  CAS  Google Scholar 

  18. Florea L, Hartzell G, Zhang Z H, Rubin G M, Miller W. A computer program for aligning a cDNA sequence with a genomic DNA sequence. Gemome Res, 8(9): 967–974

  19. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A; Rice Full-Length cDNA Consortium; National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team; Foundation of Advancement of International Science Genome Sequencing & Analysis Group; RIKEN. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica Rice: The rice full-length cDNA consortium. Science, 2004, 301(5631): 376–379

    Article  Google Scholar 

  20. Xie K B, Zhang J W Xiang Y, Feng Q, Han B, Chu Z H, Wang S P, Zhang Q F, Xiong L Z. Isolation and annotation of 10828 putative full length cDNAs from indica rice. Sci China Ser C-Life Sci, 2005, 48(5): 445–451

    Article  CAS  Google Scholar 

  21. Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 2002, 129: 440–450

    Article  PubMed  CAS  Google Scholar 

  22. Myers E W, Sutton G G, Delcher A L, Dew I M, Fasulo D P, Flanigan M J, Kravitz S A, Mobarry C M, Reinert K H, Remington K A, Anson E L, Bolanos R A, Chou H H, Jordan C M, Halpern A L, Lonardi S, Beasley E M, Brandon R C, Chen L, Dunn P J, Lai Z, Liang Y, Nusskern D R, Zhan M, Zhang Q, Zheng X, Rubin G M, Adams M D, Venter J C. A whole-genome assembly of Drosophila. Science, 2000, 287: 2196–2204

    Article  PubMed  CAS  Google Scholar 

  23. Olson M V. The maps. Clone by clone by clone. Nature, 2001, 409: 816–818

    Article  PubMed  CAS  Google Scholar 

  24. Seo K Y, Jelinsky S A, Loechler E L. Factors that influence the mutagenic patterns of DNA adducts from chemical carcinogens. Mutat Res, 2000, 463: 215–246

    Article  PubMed  CAS  Google Scholar 

  25. Timsit Y. DNA structure and polymerase fidelity. J Mol Biol, 1999, 293: 835–853

    Article  PubMed  CAS  Google Scholar 

  26. Radman M, Wagner R. Mismatch repair in Escherichia coli. Ann Rev Genet, 1986, 20: 523–538

    Article  PubMed  CAS  Google Scholar 

  27. Cheng J W, Chou S H, Reid B R. Base pairing geometry in GA mismatches depends entirely on the neighboring sequence. J Mol Biol, 1992, 228(4): 1037–1041

    Article  PubMed  CAS  Google Scholar 

  28. Gruenbaum Y, Naveh-Many T, Cedar H, Razin A. Sequence specificity of methylation in higher plant DNA. Nature, 1981, 292: 860–862

    Article  PubMed  CAS  Google Scholar 

  29. Bird A P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res, 1980, 8: 1499–1504

    PubMed  CAS  Google Scholar 

  30. Krawczak M, Ball E V, Cooper D N. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet, 1998, 63(2): 474–488

    Article  PubMed  CAS  Google Scholar 

  31. Zhao Z, Boerwinkle E. Neighboring-nucleotide effects on single nucleotide polymorphisms: A study of 2.6 million polymorphisms across the human genome. Genome Res, 2002, 12(11): 1679–1686

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jun.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Li, Q., Li, J. et al. The study of neighboring nucleotide composition and transition/transversion bias. SCI CHINA SER C 49, 395–402 (2006). https://doi.org/10.1007/s11427-006-2002-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-006-2002-5

Keywords

Navigation