Skip to main content
Log in

The effects of K+ growth conditions on the accumulation of cesium by the bacterium Thermus sp. TibetanG6

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The accumulation of cesium by the bacterium Thermus sp. TibetanG6 was examined under different K+ growth conditions. The effects of external pH and Na+ on the accumulation of cesium were also studied, and the mechanism involved was discussed. K+ regimes played an important role in the accumulation of cesium by the strain TibetanG6. The quantity of cesium accumulated (24 h) was much higher in K+-deficient regime than that in K+-sufficient regime. The pH and Na+ had different effects on the accumulation of cesium in the two K+ regimes. IR spectra analyses indicated that the biosorption is a process of homeostasis with cesium initially accumulated on the cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warner, F., Harrison, R. M., Radioecology after Chernobyl: Biogeochemical Pathways of Artificial Radionuclides, Chichester: Wiley, 1993, 400.

    Google Scholar 

  2. Tuin, B. J. W., Tels, M., Removing heavy metals from contaminated clay soils by extraction with hydrochloric acid, EDTA or hydrochlorite solutions, Environ. Technol., 1990, 11: 1039–1052., 1:CAS:528:DyaK3MXhvFWku7c%3D

    Article  CAS  Google Scholar 

  3. Yang, J., Volesky, B. P., Biosorption of uranium on Sargassum biomass, Wat. Res., 1999, 33(15): 3357–3363., 10.1016/S0043-1354(99)00043-3, 1:CAS:528:DyaK1MXmtl2htro%3D

    Article  CAS  Google Scholar 

  4. Neskovic, C. L., Ayranult, S., Badillo, V. et al., Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium, J. Solid State Chem., 2004, 177: 1817–1828.

    Article  Google Scholar 

  5. Macaskie, L. E., The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: Biodegradation and bioaccumulation as a means of treating radionuclide-containing streams, Crit. Rev. Biotechnol., 1991, 11(1): 41–112., 1:CAS:528:DyaK3MXltVWjtL4%3D, 1863981

    Article  CAS  PubMed  Google Scholar 

  6. Yong, P., Macaskie, L. E., Removal of the tetravalent actinide thorium from solution by a biocatalytic system, J. Chem. Tech. Biotechnol., 1995, 64: 87–95., 1:CAS:528:DyaK2MXotFOktb4%3D

    Article  CAS  Google Scholar 

  7. Heldal, H. E., Stupakoff, I., Fisher, N. S., Bioaccumulation of 137Cs and 57Co by five marine phytoplankton species, J. Environ. Radioact., 2001, 53(3): 231–236.

    Article  Google Scholar 

  8. Tsezos, M., Velosky, B., The mechanism of uranium biosorption by Rhizopus arrhizus, Biotech. Bioeng., 1982, 29: 955–969.

    Article  Google Scholar 

  9. Tsezos, M., Velosky, B., The mechanism of thorium biosorption by Rhizopus arrhizus, Biotech. Bioeng., 1982, 24: 385–401., 1:CAS:528:DyaL38XhtFyhsrY%3D

    Article  CAS  Google Scholar 

  10. Strandberg, G. D., Shumate, S. E., II Parrott, J. R., Microbial cells as biosorbents for heavy metals: Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa, Appl. Environ. Microbiol., 1981, 41(1): 237–245., 1:CAS:528:DyaL3MXpvFKqtw%3D%3D, 16345691

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Avery, S. V., Codd, G. A., Gadd, G. M., Caesium accumulation and interactions with other monovalent cations in the Cyanobacterium Synechocystis PCC 6803, J. Gen. Microbiol., 1991, 137: 405–413., 1:CAS:528:DyaK3MXhtlOlurk%3D

    Article  CAS  Google Scholar 

  12. Zheng, M. P., Wang, Q. X., Duo, J. et al., A New Type of Hydrothermal Deposit—Cesium-Bearing Geyserite in Tibet (in Chinese), Beijing: Geological Publishing House, 1995, 113.

    Google Scholar 

  13. Tomioka, N., Uchiyama, H., Yagi, O., Isolation and characterization of cesium-accumulating bacteria, Appl. Environ. Microbiol., 1992, 58(3): 1019–1023., 1:CAS:528:DyaK38XhsVOrtbo%3D, 1575473

    PubMed Central  CAS  PubMed  Google Scholar 

  14. de Rome, L., Gadd, G. M., Use of pellet and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery, J. Ind. Microbiol., 1991, 7: 97–104., 10.1007/BF01576071

    Article  Google Scholar 

  15. Avery, S. V., Codd, G. A., Gadd, G. M., Salt-stimulation of caesium accumulation in the euryhaline green microalga Chlorella salina: Potential relevance to the development of a biological Cs-removal process, J. Gen. Microbiol., 1993, 139: 2239–2244., 1:CAS:528:DyaK2cXisVem

    Article  CAS  Google Scholar 

  16. Rodriguez-Navarro, A., Potassium transport in fungi and plants, Biochim. Biophys. Acta, 2000, 1469: 1–30., 1:CAS:528:DC%2BD3cXhtlWkurg%3D, 10692635

    Article  CAS  PubMed  Google Scholar 

  17. Heredia, M. A., Zapico, R., Garcia-Sanchez, M. J. et al., Effect of calcium, sodium and pH on biosorption of radiocesium by Riccia Fluitans, Aquatic Botany, 2002, 74: 245–256., 10.1016/S0304-3770(02)00107-9, 1:CAS:528:DC%2BD38XntVWmtbY%3D

    Article  CAS  Google Scholar 

  18. Schachtman, D., Liu, W., Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants, Trends Plant Sci., 1999, 4: 281–287., 10.1016/S1360-1385(99)01428-4, 10407444

    Article  PubMed  Google Scholar 

  19. Rubio, F., Santa-Maria, G. E., Rodriguez-Navarro, A., Cloning of Arabidopsis and barley cDNAs enconding HAK potassium transporters in root and shoot cells, Physiol. Plant, 2000, 109: 34–43., 10.1034/j.1399-3054.2000.100106.x, 1:CAS:528:DC%2BD3cXjs1Ggs7Y%3D

    Article  CAS  Google Scholar 

  20. Avery, S. V., Codd, G. A., Gadd, G. M., Replacement of cellular potassium by cesium in Chlorella emersonii. Differential sensitity of photoautotrophic and chemoheterotrophic growth, J. Gen. Microbiol., 1992, 138: 69–76., 1:CAS:528:DyaK38Xht1Cltb4%3D

    Article  CAS  Google Scholar 

  21. Avery, S. V., Codd, G. A., Gadd, G. M., Transport kinetics, cation inhibition and intracellular location of accumulated caesium in the green microalga Chlorella salina, J. Gen. Microbiol., 1993, 139: 827–834., 1:CAS:528:DyaK3sXmtF2hu7s%3D

    Article  CAS  Google Scholar 

  22. Beveridge, T. J., The response of cell walls of Bacillus subtilis to metals and to electron-microscopic stains, Can. J. Microbiol., 1978, 24: 89–104., 1:CAS:528:DyaE1cXktl2jsLs%3D, 77178

    Article  CAS  PubMed  Google Scholar 

  23. Beveridge, T. J., Murray R. G. E. Sites of metal deposition in the cell wall of Bacillus subtilis, J. Bacteriol., 1980, 141: 876–887., 1:CAS:528:DyaL3cXhs1Snt7g%3D, 6767692

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Han, R. P., Li, J. J., Bao, G. L., Comparison of infrared spectra between the native yeast and lead-adsorbed yeast, Chinese Journal of Spectroscopy Laboratory (in Chinese), 2000, 17(4): 385–387., 1:CAS:528:DC%2BD3cXms1antrs%3D

    CAS  Google Scholar 

  25. Foust, E., Volesky, B., Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum Fluitans, Environ. Sci. Technol., 1996, 30(1): 277–282.

    Article  Google Scholar 

  26. Tyerman, S. D., Skerret, M., Garrill, A. et al., Pathways for the permeation of Na+ and Cl- into protoplast derived from the cortex of wheat roots, J. Exp. Bot., 1997, 48: 459–480., 1:CAS:528:DyaK2sXjs1emt7k%3D

    Article  CAS  PubMed  Google Scholar 

  27. Maathuis, F. J. M., Sanders, D., Contrasting roles in ion transport of two K+ channel types in root cells of Arabidopsis thaliana, Planta, 1995, 197: 456–464., 10.1007/BF00196667, 1:CAS:528:DyaK2MXpt1Kru7k%3D, 8580759

    Article  CAS  PubMed  Google Scholar 

  28. Franke, S., Grass, G., Nies, D. H., The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions, Microbiology, 2001, 147: 965–972., 1:CAS:528:DC%2BD3MXjtVeisLc%3D, 11283292

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Hailei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Kong, F. & Zheng, M. The effects of K+ growth conditions on the accumulation of cesium by the bacterium Thermus sp. TibetanG6. SCI CHINA SER C 49, 123–129 (2006). https://doi.org/10.1007/s11427-006-0123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-006-0123-5

Keywords

Navigation