Skip to main content
Log in

Rh(II)-catalyzed intermolecular carboamination of pyridines via double Csp2–H bond activations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We disclose the development of the Rh-catalyzed amine-directed remote 5,6-carboamination protocol of pyridines via dual Csp2–H functionalizations. A variety of readily available 2-aminopyridines and 1,2,3-triazoles are allowed for coupling cyclization to access polyfunctionalized azaindoles. Mechanistic studies including DFT calculations unveil that relay carbenoid-electrophilic addition to pyridines and the sequential pyridyl Csp2–H amination are involved in this transformation. The post-synthetic utility of this methodology is showcased by versatile and site-selective modification of azaindoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chemler SR. Org Biomol Chem, 2009, 7: 3009–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang H, Studer A. Chem Soc Rev, 2020, 49: 1790–1811

    Article  CAS  PubMed  Google Scholar 

  3. Kawakita K, Parker BF, Kakiuchi Y, Tsurugi H, Mashima K, Arnold J, Tonks IA. Coord Chem Rev, 2020, 407: 213118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duchemin C, Cramer N. Angew Chem Int Ed, 2020, 59: 14129–14133

    Article  CAS  Google Scholar 

  5. McAtee RC, Noten EA, Stephenson CRJ. Nat Commun, 2020, 11: 2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheung KPS, Kurandina D, Yata T, Gevorgyan V. J Am Chem Soc, 2020, 142: 9932–9937

    Article  Google Scholar 

  7. Kang T, Kim N, Cheng PT, Zhang H, Foo K, Engle KM. J Am Chem Soc, 2021, 143: 13962–13970

    Article  CAS  PubMed  Google Scholar 

  8. Mi R, Zhang X, Wang J, Chen H, Lan Y, Wang F, Li X. ACS Catal, 2021, 11: 6692–6697

    Article  CAS  Google Scholar 

  9. Wender PA, Strand D. J Am Chem Soc, 2009, 131: 7528–7529

    Article  CAS  PubMed  Google Scholar 

  10. Tambe SD, Iqbal N, Cho EJ. Org Lett, 2020, 22: 8550–8554

    Article  CAS  PubMed  Google Scholar 

  11. Kanazawa J, Maeda K, Uchiyama M. J Am Chem Soc, 2017, 139: 17791–17794

    Article  CAS  PubMed  Google Scholar 

  12. Chemler SR, Fuller PH. Chem Soc Rev, 2007, 36: 1153–1160

    Article  CAS  PubMed  Google Scholar 

  13. Wedi P, van Gemmeren M. Angew Chem Int Ed, 2018, 57: 13016–13027

    Article  CAS  Google Scholar 

  14. Nagib D. Nat Chem, 2019, 11: 396–398

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Borràs M, Osuna S, Luis JM, Swart M, Solà M. Chem Soc Rev, 2014, 43: 5089–5105

    Article  PubMed  Google Scholar 

  16. Hernandez LW, Pospech J, Klöckner U, Bingham TW, Sarlah D. J Am Chem Soc, 2017, 139: 15656–15659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hernandez LW, Klöckner U, Pospech J, Hauss L, Sarlah D. J Am Chem Soc, 2018, 140: 4503–4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang C, Okumura M, Zhu Y, Hooper AR, Zhou Y, Lee Y, Sarlah D. Angew Chem Int Ed, 2019, 58: 10245–10249

    Article  CAS  Google Scholar 

  19. Zhao SB, Wang S. Chem Soc Rev, 2010, 39: 3142–3156

    Article  CAS  PubMed  Google Scholar 

  20. Bavetsias V, Faisal A, Crumpler S, Brown N, Kosmopoulou M, Joshi A, Atrash B, Pérez-Fuertes Y, Schmitt JA, Boxall KJ, Burke R, Sun C, Avery S, Bush K, Henley A, Raynaud FI, Workman P, Bayliss R, Linardopoulos S, Blagg J. J Med Chem, 2013, 56: 9122–9135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Altmann E, Erbel P, Renatus M, Schaefer M, Schlierf A, Druet A, Kieffer L, Sorge M, Pfister K, Hassiepen U, Jones M, Ruedisser S, Ostermeier D, Martoglio B, Jefferson AB, Quancard J. Angew Chem Int Ed, 2017, 56: 1294–1297

    Article  CAS  Google Scholar 

  22. Roy S, Das SK, Khatua H, Das S, Singh KN, Chattopadhyay B. Angew Chem Int Ed, 2021, 60: 8772–8780

    Article  CAS  Google Scholar 

  23. Xiao X, Hou C, Zhang Z, Ke Z, Lan J, Jiang H, Zeng W. Angew Chem Int Ed, 2016, 55: 11897–11901

    Article  CAS  Google Scholar 

  24. Xie H, Ye Z, Ke Z, Lan J, Jiang H, Zeng W. Chem Sci, 2018, 9: 985–989

    Article  CAS  PubMed  Google Scholar 

  25. Hu X, Shao Y, Xie H, Chen X, Chen F, Ke Z, Jiang H, Zeng W. ACS Catal, 2020, 10: 8402–8408

    Article  CAS  Google Scholar 

  26. Yang C, Zhou X, Shen L, Ke Z, Jiang H, Zeng W. Nat Commun, 2023, 14: 1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson DG, Lynam JM, Mistry NS, Slattery JM, Thatcher RJ, Whitwood AC. J Am Chem Soc, 2013, 135: 2222–2234

    Article  CAS  PubMed  Google Scholar 

  28. Shang Y, Jie X, Zhao H, Hu P, Su W. Org Lett, 2014, 16: 416–419

    Article  CAS  PubMed  Google Scholar 

  29. Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Angew Chem Int Ed, 2020, 59: 9264–9280

    Article  Google Scholar 

  30. Fier PS, Hartwig JF. Science, 2013, 342: 956–960

    Article  CAS  PubMed  Google Scholar 

  31. Keylor MH, Niemeyer ZL, Sigman MS, Tan KL. J Am Chem Soc, 2017, 139: 10613–10616

    Article  CAS  PubMed  Google Scholar 

  32. Chuprakov S, Worrell BT, Selander N, Sit RK, Fokin VV. J Am Chem Soc, 2014, 136: 195–202

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Liu Y, Li Z, Dong S, Liu X, Feng X. Angew Chem Int Ed, 2020, 59: 8052–8056

    Article  CAS  Google Scholar 

  34. Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J Am Chem Soc, 2008, 130: 14972–14974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zibinsky M, Fokin VV. Angew Chem Int Ed, 2013, 52: 1507–1510

    Article  CAS  Google Scholar 

  36. Yang Y, Zhou MB, Ouyang XH, Pi R, Song RJ, Li JH. Angew Chem Int Ed, 2015, 54: 6595–6599

    Article  CAS  Google Scholar 

  37. Lee DJ, Han HS, Shin J, Yoo EJ. J Am Chem Soc, 2014, 136: 11606–11609

    Article  CAS  PubMed  Google Scholar 

  38. Martínez-Castro E, Suárez-Pantiga S, Mendoza A. Org Process Res Dev, 2020, 24: 1207–1212

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dirhodium(II)-catalysts exhibited distinguished catalytical performance possibly due to that this type of catalysts belong to weak Lewis acid, possessing an ability to stabilize carbenoid species. See: Yang LL, Evans D, Xu B, Li WT, Li ML, Zhu SF, Houk KN, Zhou QL. J Am Chem Soc, 2020, 142: 12394–12399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. For the XRD spectrum of newly prepared Cu(OH)Cl, please see Figure S1

  41. The C5-vinylation product belongs to 3a-1, see Scheme 6a

  42. Hammond M, Washburn DG, Hoang TH, Manns S, Frazee JS, Nakamura H, Patterson JR, Trizna W, Wu C, Azzarano LM, Nagilla R, Nord M, Trejo R, Head MS, Zhao B, Smallwood AM, Hightower K, Laping NJ, Schnackenberg CG, Thompson SK. Bioorg Med Chem Lett, 2009, 19: 4441–4445

    Article  CAS  PubMed  Google Scholar 

  43. The XRD-spectrum analysis indicated that Cu(OH)Cl salts in this step of transformation were converted to CuCl, please see Figure S8

  44. Olah GA, Kuhn SJ, Flood SH. J Am Chem Soc, 1961, 83: 4571–4580

    Article  CAS  Google Scholar 

  45. Kawakami T, Murakami K, Itami K. J Am Chem Soc, 2015, 137: 2460–2463

    Article  CAS  PubMed  Google Scholar 

  46. The data about the NPA charges of different positions in the 2-aminopyridine was available (see: Xie H, Shao Y, Gui J, Lan J, Liu Z, Ke Z, Deng Y, Jiang H, Zeng W. Org Lett, 2019, 21: 3427–3430), the combined factors of electron density and steric hindrance of different position of 2-aminopyridine led to that Rh-carbene highly regioselectively attack the C5-position of the 2-aminopyridine.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22271100, 21973113), the Key-Area Research and Development Program of Guangdong Province (2020-B010188001), the Guangdong Basic and Applied Basic Research Foundation (2023A1515010070), and the China Postdoctoral Science Foundation (2021M701243).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junshan Liu, Zhuofeng Ke, Fengjuan Chen or Wei Zeng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Jiang, J., Zou, L. et al. Rh(II)-catalyzed intermolecular carboamination of pyridines via double Csp2–H bond activations. Sci. China Chem. 67, 374–382 (2024). https://doi.org/10.1007/s11426-023-1785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1785-1

Navigation