Skip to main content
Log in

Cation-π and electrostatic interactions co-driven assembly of two-dimensional heteropore supramolecular polymers with rapid iodine capture capability

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Constructing two-dimensional (2D) supramolecular polymers with complicated hierarchical porosity significantly contributes to developing effective strategies to control delicate self-assembly architectures, thus facilitating the fabrication of advanced 2D organic functional materials. Here, we report utilizing cooperative cation-π and electrostatic interactions to construct a series of robust 2D heteropore supramolecular polymers (2D HPSPs) with hierarchical pore structures, in which hexagonal and rectangular pores are alternately and periodically arranged, and the pore sizes can be finely tuned. Remarkably, the as-prepared 2D HPSPs exhibit excellent iodine (I2) capture rate (a maximum K80% value is 2.25 g h−1), and present a novel mechanism involving transport-adsorption spatiotemporal separation for rapid I2 capture. In this mechanism, the transport of free I2 is first conducted in large hexagonal pores, and then I2 can be preferentially adsorbed in small rectangular pores, thereby preventing the transfer channels from blocking and greatly improving the adsorption kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuang X, Mai Y, Wu D, Zhang F, Feng X. Adv Mater, 2015, 27: 403–427

    Article  CAS  PubMed  Google Scholar 

  2. Liu X, Zhou X, Shen B, Kim Y, Wang H, Pan W, Kim J, Lee M. J Am Chem Soc, 2020, 142: 1904–1910

    Article  CAS  PubMed  Google Scholar 

  3. Park SK, Kim JH, Park SY. Adv Mater, 2018, 30: 1704759

    Article  Google Scholar 

  4. Boott CE, Nazemi A, Manners I. Angew Chem Int Ed, 2015, 54: 13876–13894

    Article  CAS  Google Scholar 

  5. Yang F, Cheng S, Zhang X, Ren X, Li R, Dong H, Hu W. Adv Mater, 2018, 30: 1702415

    Article  Google Scholar 

  6. Li J, Zhao S, Wang B, Feng X. Sci China Chem, 2022, 65: 836–839

    Article  CAS  Google Scholar 

  7. Zhang P, Wang Z, Yang Y, Wang S, Wang T, Liu J, Cheng P, Chen Y, Zhang Z. Sci China Chem, 2022, 65: 1173–1184

    Article  CAS  Google Scholar 

  8. Chen J, Zhu E, Liu J, Zhang S, Lin Z, Duan X, Heinz H, Huang Y, De Yoreo JJ. Science, 2018, 362: 1135–1139

    Article  CAS  PubMed  Google Scholar 

  9. Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, Feng X. Angew Chem Int Ed, 2015, 54: 12058–12063

    Article  CAS  Google Scholar 

  10. Yang B, Yu S, Zhang P, Wang Z, Qi Q, Wang X, Xu X, Yang H, Wu Z, Liu Y, Ma D, Li Z. Angew Chem Int Ed, 2021, 60: 26268–26275

    Article  CAS  Google Scholar 

  11. Zhang G, Li B, Zhou Y, Chen X, Li B, Lu ZY, Wu L. Nat Commun, 2020, 11: 425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yin ZJ, Jiang SY, Liu N, Qi QY, Wu ZQ, Zhan TG, Zhao X. CCS Chem, 2022, 4: 141–150

    Article  CAS  Google Scholar 

  13. Li P, Ryder MR, Stoddart JF. Acc Mater Res, 2020, 1: 77–87

    Article  CAS  Google Scholar 

  14. Insua I, Bergueiro J, Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Chem Sci, 2022, 13: 3057–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pfeffermann M, Dong R, Graf R, Zajaczkowski W, Gorelik T, Pisula W, Narita A, Müllen K, Feng X. J Am Chem Soc, 2015, 137: 14525–14532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng X, Shen B, Sun B, Kim J, Liu X, Lee M. Angew Chem Int Ed, 2020, 59: 11355–11359

    Article  CAS  Google Scholar 

  17. Xiao X, Chen H, Dong X, Ren D, Deng Q, Wang D, Tian W. Angew Chem Int Ed, 2020, 59: 9534–9541

    Article  CAS  Google Scholar 

  18. Li Y, Li Q, Miao X, Qin C, Chu D, Cao L. Angew Chem Int Ed, 2021, 60: 6744–6751

    Article  CAS  Google Scholar 

  19. Tian J, Yao C, Yang WL, Zhang L, Zhang DW, Wang H, Zhang F, Liu Y, Li ZT. Chin Chem Lett, 2017, 28: 798–806

    Article  CAS  Google Scholar 

  20. Patil RS, Banerjee D, Zhang C, Thallapally PK, Atwood JL. Angew Chem Int Ed, 2016, 55: 4523–4526

    Article  CAS  Google Scholar 

  21. Chen W, Li X, Liu C, He J, Qi M, Sun Y, Shi B, Sepehrpour H, Li H, Tian W, Stang PJ. Proc Natl Acad Sci USA, 2020, 117: 30942–30948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin Y, Hu Y, Zhang W. Nat Rev Chem, 2017, 1: 0056

    Article  Google Scholar 

  23. Liang RR, Jiang SY A RH, Zhao X. Chem Soc Rev, 2020, 49: 3920–3951

    Article  CAS  PubMed  Google Scholar 

  24. Sun Q, Dai Z, Meng X, Xiao FS. Chem Soc Rev, 2015, 44: 6018–6034

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Zhang J, Chen Q, Xia X, Chen M. Adv Mater, 2021, 33: 2100855

    Article  CAS  Google Scholar 

  26. Sun Q, Aguila B, Lan PC, Ma S. Adv Mater, 2019, 31: 1900008

    Article  Google Scholar 

  27. Liu C, Fang W, Sun Y, Yao S, Wang S, Lu D, Zhang J. Angew Chem Int Ed, 2021, 60: 21426–21433

    Article  CAS  Google Scholar 

  28. Mehrparvar S, Wölper C, Gleiter R, Haberhauer G. Angew Chem Int Ed, 2020, 59: 17154–17161

    Article  CAS  Google Scholar 

  29. Yin Q, Li YL, Li L, Lü J, Liu TF, Cao R. ACS Appl Mater Interfaces, 2019, 11: 17823–17827

    Article  CAS  PubMed  Google Scholar 

  30. Kinjo K, Hirao T, Kihara S, Katsumoto Y, Haino T. Angew Chem Int Ed, 2015, 54: 14830–14834

    Article  CAS  Google Scholar 

  31. Zhang Q, Shi CY, Qu DH, Long YT, Feringa BL, Tian H. Sci Adv, 2018, 4: eaat8192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dougherty DA, Stauffer DA. Science, 1990, 250: 1558–1560

    Article  CAS  PubMed  Google Scholar 

  33. Mahadevi AS, Sastry GN. Chem Rev, 2013, 113: 2100–2138

    Article  CAS  PubMed  Google Scholar 

  34. Fan H, Guo H, Wang J, Gong JP. Giant, 2020, 1: 100005

    Article  Google Scholar 

  35. Yue L, Wang S, Zhou D, Zhang H, Li B, Wu L. Nat Commun, 2016, 7: 10742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Wall SL, Meadows ES, Barbour LJ, Gokel GW. J Am Chem Soc, 1999, 121: 5613–5614

    Article  CAS  Google Scholar 

  37. Chang G, Yang L, Yang J, Stoykovich MP, Deng X, Cui J, Wang D. Adv Mater, 2018, 30: 1704234

    Article  Google Scholar 

  38. Guo X, Li Y, Zhang M, Cao K, Tian Y, Qi Y, Li S, Li K, Yu X, Ma L. Angew Chem Int Ed, 2020, 59: 22697–22705

    Article  CAS  Google Scholar 

  39. Xie Y, Pan T, Lei Q, Chen C, Dong X, Yuan Y, Shen J, Cai Y, Zhou C, Pinnau I, Han Y. Angew Chem Int Ed, 2021, 60: 22432–22440

    Article  CAS  Google Scholar 

  40. Lu Q, Oh DX, Lee Y, Jho Y, Hwang DS, Zeng H. Angew Chem, 2013, 125: 4036–4040

    Article  Google Scholar 

  41. Chen LJ, Humphrey SJ, Zhu JL, Zhu FF, Wang XQ, Wang X, Wen J, Yang HB, Gale PA. J Am Chem Soc, 2021, 143: 8295–8304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu Y, Wan S, Jin Y, Zhang W. J Am Chem Soc, 2015, 137: 13772–13775

    Article  CAS  PubMed  Google Scholar 

  43. Zhou TY, Xu SQ, Wen Q, Pang ZF, Zhao X. J Am Chem Soc, 2014, 136: 15885–15888

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong SS, An H, Yan N, Xie J, Yu C, Zhang P, Du Y, Xi S, Zheng L, Cao X, Wu Y, Wang Y, Wang C, Wen H, Chen L, Xing H, Wang J. Science, 2021, 373: 315–320

    Article  CAS  PubMed  Google Scholar 

  45. Bryce DL, Adiga S, Elliott EK, Gokel GW. J Phys Chem A, 2006, 110: 13568–13577

    Article  CAS  PubMed  Google Scholar 

  46. Roy S, Adury VSS, Rao A, Roy S, Mukherjee A, Pillai PP. Angew Chem Int Ed, 2022, 61: e202203924

    CAS  Google Scholar 

  47. Wang Y, Pei H, Jia Y, Liu J, Li Z, Ai K, Lu Z, Lu L. J Am Chem Soc, 2017, 139: 11616–11621

    Article  CAS  PubMed  Google Scholar 

  48. Lefebvre C, Rubez G, Khartabil H, Boisson JC, Contreras-García J, Hénon E. Phys Chem Chem Phys, 2017, 19: 17928–17936

    Article  CAS  PubMed  Google Scholar 

  49. De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. Chem Rev, 2009, 109: 5687–5754

    Article  CAS  PubMed  Google Scholar 

  50. Gao Z, Yan F, Qiu S, Han Y, Wang F, Tian W. Chem Commun, 2020, 56: 9214–9217

    Article  CAS  Google Scholar 

  51. Evans AM, Parent LR, Flanders NC, Bisbey RP, Vitaku E, Kirschner MS, Schaller RD, Chen LX, Gianneschi NC, Dichtel WR. Science, 2018, 361: 52–57

    Article  CAS  PubMed  Google Scholar 

  52. Liu K, Qi H, Dong R, Shivhare R, Addicoat M, Zhang T, Sahabudeen H, Heine T, Mannsfeld S, Kaiser U, Zheng Z, Feng X. Nat Chem, 2019, 11: 994–1000

    Article  CAS  PubMed  Google Scholar 

  53. Xie W, Cui D, Zhang SR, Xu YH, Jiang DL. Mater Horiz, 2019, 6: 1571–1595

    Article  CAS  Google Scholar 

  54. Luo D, He Y, Tian J, Sessler JL, Chi X. J Am Chem Soc, 2022, 144: 113–117

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Z, Dong X, Yin J, Li ZG, Li X, Zhang D, Pan T, Lei Q, Liu X, Xie Y, Shui F, Li J, Yi M, Yuan J, You Z, Zhang L, Chang J, Zhang H, Li W, Fang Q, Li B, Bu XH, Han Y. J Am Chem Soc, 2022, 144: 6821–6829

    Article  CAS  PubMed  Google Scholar 

  56. Dai D, Yang J, Zou Y, Wu J, Tan L, Wang Y, Li B, Lu T, Wang B, Yang Y. Angew Chem Int Ed, 2021, 60: 8967–8975

    Article  CAS  Google Scholar 

  57. Xie L, Zheng Z, Lin Q, Zhou H, Ji X, Sessler JL, Wang H. Angew Chem Intl Ed, 2022, 61: e202113724

    CAS  Google Scholar 

  58. Huang M, Yang L, Li X, Chang G. Chem Commun, 2020, 56: 1401–1404

    Article  CAS  Google Scholar 

  59. Liu C, Jin Y, Yu Z, Gong L, Wang H, Yu B, Zhang W, Jiang J. J Am Chem Soc, 2022, 144: 12390–12399

    Article  CAS  PubMed  Google Scholar 

  60. Zhang L, Li J, Zhang H, Liu Y, Cui Y, Jin F, Wang K, Liu G, Zhao Y, Zeng Y. Chem Commun, 2021, 57: 5558–5561

    Article  CAS  Google Scholar 

  61. Song S, Shi Y, Liu N, Liu F. ACS Appl Mater Interfaces, 2021, 13: 10513–10523

    Article  CAS  PubMed  Google Scholar 

  62. Yin ZJ, Xu SQ, Zhan TG, Qi QY, Wu ZQ, Zhao X. Chem Commun, 2017, 53: 7266–7269

    Article  CAS  Google Scholar 

  63. Zhang X, da Silva I, Godfrey HGW, Callear SK, Sapchenko SA, Cheng Y, Vitórica-Yrezábal I, Frogley MD, Cinque G, Tang CC, Giacobbe C, Dejoie C, Rudić S, Ramirez-Cuesta AJ, Denecke MA, Yang S, Schröder M. J Am Chem Soc, 2017, 139: 16289–16296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sava DF, Rodriguez MA, Chapman KW, Chupas PJ, Greathouse JA, Crozier PS, Nenoff TM. J Am Chem Soc, 2011, 133: 12398–12401

    Article  CAS  PubMed  Google Scholar 

  65. Li B, Wang B, Huang X, Dai L, Cui L, Li J, Jia X, Li C. Angew Chem Int Ed, 2019, 58: 3885–3889

    Article  Google Scholar 

  66. Lin Y, Jiang X, Kim ST, Alahakoon SB, Hou X, Zhang Z, Thompson CM, Smaldone RA, Ke C. J Am Chem Soc, 2017, 139: 7172–7175

    Article  CAS  PubMed  Google Scholar 

  67. Jie K, Zhou Y, Li E, Li Z, Zhao R, Huang F. J Am Chem Soc, 2017, 139: 15320–15323

    Article  CAS  PubMed  Google Scholar 

  68. Sun H, Yang B, Li A. Chem Eng J, 2019, 372: 65–73

    Article  CAS  Google Scholar 

  69. Riley BJ, Chong S, Olszta MJ, Peterson JA. ACS Appl Mater Interfaces, 2020, 12: 19682–19692

    Article  CAS  PubMed  Google Scholar 

  70. Theiss FL, Ayoko GA, Frost RL. Chem Eng J, 2016, 296: 300–309

    Article  CAS  Google Scholar 

  71. Noh HJ, Im YK, Yu SY, Seo JM, Mahmood J, Yildirim T, Baek JB. Nat Commun, 2020, 11: 2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22022107, 22071197). We would like to thank the Analytical & Testing Centre of Northwestern Polytechnical University for TEM, AFM, and SEM tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tian.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest The authors declare no conflict of interest.

Supporting Information for

11426_2023_1611_MOESM1_ESM.pdf

Cation-π and Electrostatic Interactions Co-Driven Assembly of Two-Dimensional Heteropore Supramolecular Polymers with Rapid Iodine Capture Capability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, H., Xiao, X., Chang, L. et al. Cation-π and electrostatic interactions co-driven assembly of two-dimensional heteropore supramolecular polymers with rapid iodine capture capability. Sci. China Chem. 66, 2070–2082 (2023). https://doi.org/10.1007/s11426-023-1611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1611-7

Keywords

Navigation