Skip to main content
Log in

Acceptorless dehydrogenative amination of alkenes for the synthesis of N-heterocycles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

Catalytic amination of alkenes is one of the most attractive reactions for the construction of complex heterocycles with nitrogen centers. Herein, we present that synergistic photoredox and cobaloxime catalysis allows for highly efficient and mild dehydrogenative reactions between various NH nucleophiles and di-, tri-, and tetrasubstituted alkenes in the absence of external oxidants, thus enabling access to an array of N-heterocycles. Notably, both Z- and E-alkene-containing N-heterocycles are accessible. Mechanistic studies indicated that the Z-cinnamyl derivatives could be generated by photocatalytic E to Z alkene isomerization through an energy transfer process. Moreover, we find that sluggish energy transfer could inhibit the E to Z alkene isomerization process, thus offering the cinnamyl derivatives with E-selectivity. Our results highlight the benefits of the reactions using dual photoredox and cobaloxime catalysis to lead to diverse N-heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Nay B, Riache N, Evanno L. Nat Prod Rep, 2009, 26: 1044–1062

    Article  CAS  PubMed  Google Scholar 

  2. Lovering F, Bikker J, Humblet C. J Med Chem, 2009, 52: 6752–6756

    Article  CAS  PubMed  Google Scholar 

  3. Vitaku E, Smith DT, Njardarson JT. J Med Chem, 2014, 57: 10257–10274

    Article  CAS  PubMed  Google Scholar 

  4. For some reviews, see: (a) Kotov V, Scarborough CC, Stahl SS. Inorg Chem, 2007, 46: 1910–1923

    Article  CAS  PubMed  Google Scholar 

  5. McDonald RI, Liu G, Stahl SS. Chem Rev, 2011, 111: 2981–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kočovský P, Bäckvall JE. Chem Eur J, 2015, 21: 36–56

    Article  PubMed  Google Scholar 

  7. For selected examples, see: (a) Larock RC, Hightower TR, Hasvold LA, Peterson KP. J Org Chem, 1996, 61: 3584–3585

    Article  CAS  PubMed  Google Scholar 

  8. Fix SR, Brice JL, Stahl SS. Angew Chem Int Ed, 2002, 41: 164–166

    Article  CAS  Google Scholar 

  9. McDonald RI, Stahl SS. Angew Chem Int Ed, 2010, 49: 5529–5532

    Article  CAS  Google Scholar 

  10. McDonald RI, White PB, Weinstein AB, Tam CP, Stahl SS. Org Lett, 2011, 13: 2830–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weinstein AB, Stahl SS. Angew Chem Int Ed, 2012, 51: 11505–11509

    Article  CAS  Google Scholar 

  12. Yang G, Shen C, Zhang W. Angew Chem Int Ed, 2012, 51: 9141–9145

    Article  CAS  Google Scholar 

  13. Weinstein AB, Schuman DP, Tan ZX, Stahl SS. Angew Chem Int Ed, 2013, 52: 11867–11870

    Article  CAS  Google Scholar 

  14. Kou X, Shao Q, Ye C, Yang G, Zhang W. J Am Chem Soc, 2018, 140: 7587–7597

    Article  CAS  PubMed  Google Scholar 

  15. Xiong P, Xu HH, Xu HC. J Am Chem Soc, 2017, 139: 2956–2959

    Article  CAS  PubMed  Google Scholar 

  16. Huang C, Li ZY, Song J, Xu HC. Angew Chem Int Ed, 2021, 60: 11237–11241

    Article  CAS  Google Scholar 

  17. Cai CY, Wu ZJ, Liu JY, Chen M, Song J, Xu HC. Nat Commun, 2021, 12: 3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yi X, Hu X. Angew Chem Int Ed, 2019, 58: 4700–4704

    Article  CAS  Google Scholar 

  19. Xiong P, Xu F, Qian XY, Yohannes Y, Song J, Lu X, Xu HC. Chem Eur J, 2016, 22: 4379–4383

    Article  CAS  PubMed  Google Scholar 

  20. Yang D, Chen J, Huang Y, Pan H, Shi J, Zhang Y, Wang F, Li Z. ACS Catal, 2021, 11: 9860–9868

    Article  CAS  Google Scholar 

  21. Reed NL, Lutovsky GA, Yoon TP. J Am Chem Soc, 2021, 143: 6065–6070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. For some reviews, see: (a) Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ravelli D, Protti S, Fagnoni M. Chem Rev, 2016, 116: 9850–9913

    Article  CAS  PubMed  Google Scholar 

  24. Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166

    Article  CAS  PubMed  Google Scholar 

  25. Zhou QQ, Zou YQ, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2019, 58: 1586–1604

    Article  CAS  Google Scholar 

  26. Miller DC, Choi GJ, Orbe HS, Knowles RR. J Am Chem Soc, 2015, 137: 13492–13495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi GJ, Knowles RR. J Am Chem Soc, 2015, 137: 9226–9229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. For Ag-catalyzed amidyl radical cyclization, see: Li Z, Song L, Li C. J Am Chem Soc, 2013, 135: 4640–4643

    Article  CAS  PubMed  Google Scholar 

  29. Jia J, Ho YA, Bülow RF, Rueping M. Chem Eur J, 2018, 24: 14054–14058

    Article  CAS  PubMed  Google Scholar 

  30. Zheng S, Gutiérrez-Bonet Á, Molander GA. Chem, 2019, 5: 339–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang C, Wang Y, Song Y, Gao H, Sun Y, Sun X, Yang Y, He M, Yang Z, Zhan L, Yu ZX, Rao Y. CCS Chem, 2019, 1: 352–364

    Article  CAS  Google Scholar 

  32. Zhu Q, Graff DE, Knowles RR. J Am Chem Soc, 2018, 140: 741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giedyk M, Goliszewska K, Gryko D. Chem Soc Rev, 2015, 44: 3391–3404

    Article  CAS  PubMed  Google Scholar 

  34. Weiss ME, Kreis LM, Lauber A, Carreira EM. Angew Chem Int Ed, 2011, 50: 11125–11128

    Article  CAS  Google Scholar 

  35. Kreis LM, Krautwald S, Pfeiffer N, Martin RE, Carreira EM. Org Lett, 2013, 15: 1634–1637

    Article  CAS  PubMed  Google Scholar 

  36. Liu WQ, Lei T, Zhou S, Yang XL, Li J, Chen B, Sivaguru J, Tung CH, Wu LZ. J Am Chem Soc, 2019, 141: 13941–13947

    Article  CAS  PubMed  Google Scholar 

  37. Zhang G, Zhang L, Yi H, Luo Y, Qi X, Tung CH, Wu LZ, Lei A. Chem Commun, 2016, 52: 10407–10410

    Article  CAS  Google Scholar 

  38. Cao H, Jiang H, Feng H, Kwan JMC, Liu X, Wu J. J Am Chem Soc, 2018, 140: 16360–16367

    Article  CAS  PubMed  Google Scholar 

  39. Sun X, Chen J, Ritter T. Nat Chem, 2018, 10: 1229–1233

    Article  CAS  PubMed  Google Scholar 

  40. Tu JL, Liu JL, Tang W, Su M, Liu F. Org Lett, 2020, 22: 1222–1226

    Article  CAS  PubMed  Google Scholar 

  41. Tu JL, Tang W, Xu W, Liu F. J Org Chem, 2021, 86: 2929–2940

    Article  CAS  PubMed  Google Scholar 

  42. For reviews, see: (a) Molloy JJ, Morack T, Gilmour R. Angew Chem Int Ed, 2019, 58: 13654–13664

    Article  CAS  Google Scholar 

  43. Zhang H, Yu S. Chin J Org Chem, 2019, 39: 95–108

    Article  Google Scholar 

  44. Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Chem Rev, 2022, 122: 2650–2694

    Article  PubMed  Google Scholar 

  45. Cheng X, Li T, Liu Y, Lu Z. ACS Catal, 2021, 11: 11059–11065

    Article  CAS  Google Scholar 

  46. Xu J, Li Z, Xu Y, Shu X, Huo H. ACS Catal, 2021, 11: 13567–13574

    Article  CAS  Google Scholar 

  47. Singh K, Staig SJ, Weaver JD. J Am Chem Soc, 2014, 136: 5275–5278

    Article  CAS  PubMed  Google Scholar 

  48. Metternich JB, Gilmour R. J Am Chem Soc, 2015, 137: 11254–11257

    Article  CAS  PubMed  Google Scholar 

  49. Brégent T, Bouillon JP, Poisson T. Org Lett, 2020, 22: 7688–7693

    Article  PubMed  Google Scholar 

  50. Shen X, Huang C, Yuan XA, Yu S. Angew Chem Int Ed, 2021, 60: 9672–9679

    Article  CAS  Google Scholar 

  51. Gellert E. J Nat Prod, 1982, 45: 50–73

    Article  CAS  Google Scholar 

  52. Gao W, Lam W, Zhong S, Kaczmarek C, Baker DC, Cheng YC. Cancer Res, 2004, 64: 678–688

    Article  CAS  PubMed  Google Scholar 

  53. Wen T, Wang Z, Meng X, Wu M, Li Y, Wu X, Zhao L, Wang P, Yin Z, Li-Ling J, Wang Q. ACS Med Chem Lett, 2014, 5: 1027–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han G, Chen L, Wang Q, Wu M, Liu Y, Wang Q. J Agric Food Chem, 2018, 66: 780–788

    Article  CAS  PubMed  Google Scholar 

  55. Newcomb M, Esker JL. Tetrahedron Lett, 1991, 32: 1035–1038

    Article  CAS  Google Scholar 

  56. Orito K, Miyazawa M, Nakamura T, Horibata A, Ushito H, Nagasaki H, Yuguchi M, Yamashita S, Yamazaki T, Tokuda M. J Org Chem, 2006, 71: 5951–5958

    Article  CAS  PubMed  Google Scholar 

  57. Bertrand MB, Leathen ML, Wolfe JP. Org Lett, 2007, 9: 457–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dempsey JL, Brunschwig BS, Winkler JR, Gray HB. Acc Chem Res, 2009, 42: 1995–2004

    Article  CAS  PubMed  Google Scholar 

  59. Ruccolo S, Qin Y, Schnedermann C, Nocera DG. J Am Chem Soc, 2018, 140: 14926–14937

    Article  CAS  PubMed  Google Scholar 

  60. A hydrogen atom abstraction process involving Co(II) complex, see: Zhao H, McMillan AJ, Constantin T, Mykura RC, Juliá F, Leonori D. J Am Chem Soc, 2021, 143: 14806–14813

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJA350001) and the Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supporting Information For

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, JL., Tang, W., He, SH. et al. Acceptorless dehydrogenative amination of alkenes for the synthesis of N-heterocycles. Sci. China Chem. 65, 1330–1337 (2022). https://doi.org/10.1007/s11426-022-1241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1241-x

Keywords

Navigation