Skip to main content
Log in

A universal tactic of using Lewis-base polymer-CNTs composites as additives for high performance cm2-sized and flexible perovskite solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lewis-base polymers have been widely utilized as additives to act as a template for the perovskite nucleation/crystal growth and passivate the under-coordinated Pb2+ sites. However, it is uncovered in this work that the polymer on the perovskite grain boundaries would significantly hinder the charge transport due to its low conductivity, which brings about free carrier recombination and photocurrent losses. To circumvent this issue while fully exploiting the benefits of polymers in passivating the trap states in perovskite, we incorporate highly conductive multiwall carbon nanotubes (CNTs) with Lewis-base polymers as co-additives in the perovskite film. Functionalizing the CNTs with -COOH group enables a selective hole-extraction and charge transport from perovskite to the hole transporting materials (HTM). By studying the charge transporting and recombination dynamics, we revealed the individual role of the polymer and CNTs in passivating the trap states and facilitating the charge transport, respectively. As a result, the perovskite solar cells (PSCs) with polymer-CNTs composites exhibit an impressive PCE of 21.7% for a small-area device (0.16 cm2) and 20.7% for a large-area device (1.0 cm2). Moreover, due to the superior mechanical flexibility of both polymer and CNTs, the polymer-CNTs composites incorporation in the perovskite film encourages the fabrication of flexible PSCs (f-PSCs) with an impressive PCE of 18.3%, and a strong mechanical durability by retaining 80% of the initial PCE after 1,000 times bending. In addition, we proved that the selection criteria of the polymers can be extended to other long-chain Lewis-base polymers, which opens new possibilities in design and synthesis of inexpensive material for this tactic towards the fabrication of high performance large-area PSCs and f-PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum TC, Lam YM. Energy Environ Sci, 2014, 7: 399–407

    CAS  Google Scholar 

  2. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeer-uddin MK, Grätzel M. Nature, 2013, 499: 316–319

    CAS  PubMed  Google Scholar 

  3. Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser JE. Nat Photon, 2014, 8: 250–255

    CAS  Google Scholar 

  4. Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM. Science, 2015, 347: 519–522

    CAS  PubMed  Google Scholar 

  5. McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Horantner MT, Haghighirad A, Sakai N, Korte L, Rech B, Johnston MB, Herz LM, Snaith HJ. Science, 2016, 351: 151–155

    CAS  PubMed  Google Scholar 

  6. Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Gratzel M. Science, 2016, 354: 206–209

    CAS  PubMed  Google Scholar 

  7. Wu WQ, Huang F, Chen D, Cheng YB, Caruso RA. Adv Energy Mater, 2016, 6: 1502027

    Google Scholar 

  8. Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546

    CAS  PubMed  Google Scholar 

  9. Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682–689

    CAS  Google Scholar 

  10. Zheng S, Wang G, Liu T, Lou L, Xiao S, Yang S. Sci China Chem, 2019, 62: 800–809

    CAS  Google Scholar 

  11. Wei Q, Ye Z, Ren X, Fu F, Yang Z, Liu S, Yang D. Sci China Chem, 2020, 63: 818–826

    CAS  Google Scholar 

  12. Bai Y, Zhao C, Zhang S, Zhang S, Yu R, Hou J, Tan Z, Li Y. Sci China Chem, 2020, 63: 957–965

    CAS  Google Scholar 

  13. National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiencies Chart, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf

  14. Baloch AAB, Hossain MI, Tabet N, Alharbi FH. J Phys Chem Lett, 2018, 9: 426–434

    CAS  PubMed  Google Scholar 

  15. Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, Snaith HJ. ACS Nano, 2014, 8: 9815–9821

    CAS  PubMed  Google Scholar 

  16. Yin WJ, Shi T, Yan Y. Appl Phys Lett, 2014, 104: 063903

    Google Scholar 

  17. Agiorgousis ML, Sun YY, Zeng H, Zhang S. J Am Chem Soc, 2014, 136: 14570–14575

    CAS  PubMed  Google Scholar 

  18. Bi D, Yi C, Luo J, Décoppet JD, Zhang F, Zakeeruddin SM, Li X, Hagfeldt A, Grätzel M. Nat Energy, 2016, 1: 16142

    CAS  Google Scholar 

  19. Zuo L, Guo H, de Quilettes DW, Jariwala S, De Marco N, Dong S, De Block R, Ginger DS, Dunn B, Wang M, Yang Y. Sci Adv, 2017, 3: e1700106

    PubMed  PubMed Central  Google Scholar 

  20. Qin PL, Yang G, Ren Z, Cheung SH, So SK, Chen L, Hao J, Hou J, Li G. Adv Mater, 2018, 30: 1706126

    Google Scholar 

  21. Jiang J, Wang Q, Jin Z, Zhang X, Lei J, Bin H, Zhang ZG, Li Y, Liu SF. Adv EnergyMater, 2018, 8: 1701757

    Google Scholar 

  22. Lin Y, Chen B, Fang Y, Zhao J, Bao C, Yu Z, Deng Y, Rudd PN, Yan Y, Yuan Y, Huang J. Nat Commun, 2018, 9: 4981

    PubMed  PubMed Central  Google Scholar 

  23. Xu X, Wang M. Sci China Chem, 2017, 60: 396–404

    CAS  Google Scholar 

  24. Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO. Adv Mater, 2011, 23: 629–633

    CAS  PubMed  Google Scholar 

  25. Rowell MW, Topinka MA, McGehee MD, Prall HJ, Dennler G, Sariciftci NS, Hu L, Gruner G. Appl Phys Lett, 2006, 88: 233506

    Google Scholar 

  26. Pasquier AD, Unalan HE, Kanwal A, Miller S, Chhowalla M. Appl Phys Lett, 2005, 87: 203511

    Google Scholar 

  27. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ. Nano Lett, 2014, 14: 5561–5568

    CAS  PubMed  Google Scholar 

  28. Cai M, Tiong VT, Hreid T, Bell J, Wang H. J Mater Chem A, 2015, 3: 2784–2793

    CAS  Google Scholar 

  29. Aitola K, Sveinbjörnsson K, Correa-Baena JP, Kaskela A, Abate A, Tian Y, Johansson EMJ, Grätzel M, Kauppinen EI, Hagfeldt A, Boschloo G. Energy Environ Sci, 2016, 9: 461–466

    CAS  Google Scholar 

  30. Lee J, Menamparambath MM, Hwang JY, Baik S. ChemSusChem, 2015, 8: 2358–2362

    CAS  PubMed  Google Scholar 

  31. Zheng X, Chen H, Li Q, Yang Y, Wei Z, Bai Y, Qiu Y, Zhou D, Wong KS, Yang S. Nano Lett, 2017, 17: 2496–2505

    CAS  PubMed  Google Scholar 

  32. Pramanik C, Gissinger JR, Kumar S, Heinz H. ACS Nano, 2017, 11: 12805–12816

    CAS  PubMed  Google Scholar 

  33. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH. J Phys Chem B, 1999, 103: 8116–8121

    CAS  Google Scholar 

  34. Peng J, Khan JI, Liu W, Ugur E, Duong T, Wu Y, Shen H, Wang K, Dang H, Aydin E, Yang X, Wan Y, Weber KJ, Catchpole KR, Laquai F, De Wolf S, White TP. Adv Energy Mater, 2018, 8: 1801208

    Google Scholar 

  35. Wu T, Liu X, He X, Wang Y, Meng X, Noda T, Yang X, Han L. Sci China Chem, 2020, 63: 107–115

    CAS  Google Scholar 

  36. Liu D, Zhou W, Tang H, Fu P, Ning Z. Sci China Chem, 2018, 61: 1278–1284

    CAS  Google Scholar 

  37. Cho H, Jeong SH, Park MH, Kim YH, Wolf C, Lee CL, Heo JH, Sadhanala A, Myoung NS, Yoo S, Im SH, Friend RH, Lee TW. Science, 2015, 350: 1222–1225

    CAS  PubMed  Google Scholar 

  38. Lindblad R, Bi D, Park B, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson EMJ, Rensmo H. J Phys Chem Lett, 2014, 5: 648–653

    CAS  PubMed  Google Scholar 

  39. Brennan MC, Draguta S, Kamat PV, Kuno M. ACS Energy Lett, 2018, 3: 204–213

    CAS  Google Scholar 

  40. Draguta S, Sharia O, Yoon SJ, Brennan MC, Morozov YV, Manser JS, Kamat PV, Schneider WF, Kuno M. Nat Commun, 2017, 8: 200

    PubMed  PubMed Central  Google Scholar 

  41. Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J. Nat Mater, 2015, 14: 193–198

    CAS  PubMed  Google Scholar 

  42. Yuan Y, Huang J. Acc Chem Res, 2016, 49: 286–293

    CAS  PubMed  Google Scholar 

  43. Pockett A, Eperon GE, Peltola T, Snaith HJ, Walker A, Peter LM, Cameron PJ. J Phys Chem C, 2015, 119: 3456–3465

    CAS  Google Scholar 

  44. Chen B, Yang M, Zheng X, Wu C, Li W, Yan Y, Bisquert J, Garcia-Belmonte G, Zhu K, Priya S. J Phys Chem Lett, 2015, 6: 4693–4700

    CAS  PubMed  Google Scholar 

  45. Almora O, Zarazua I, Mas-Marza E, Mora-Sero I, Bisquert J, Garcia-Belmonte G. J Phys Chem Lett, 2015, 6: 1645–1652

    CAS  PubMed  Google Scholar 

  46. Li M, Yang Y, Wang Z, Kang T, Wang Q, Turren-Cruz S, Gao X, Hsu C, Liao L, Abate A. Adv Mater, 2019, 31: 1901519

    Google Scholar 

  47. Ru P, Bi E, Zhang Y, Wang Y, Kong W, Sha Y, Tang W, Zhang P, Wu Y, Chen W, Yang X, Chen H, Han L. Adv Energy Mater, 2020, 10: 1903487

    CAS  Google Scholar 

  48. Zeng G, Zhang J, Chen X, Gu H, Li Y, Li Y. Sci China Chem, 2019, 62: 851–858

    CAS  Google Scholar 

  49. Li Y, Xu G, Cui C, Li Y. Adv Energy Mater, 2018, 8: 1701791

    Google Scholar 

  50. Chen X, Xu G, Zeng G, Gu H, Chen H, Xu H, Yao H, Li Y, Hou J, Li Y. Adv Mater, 2020, 32: 1908478

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (21925506), the National Key R&D Program of China (2017YFE0106000), the National Natural Science Foundation of China (51773212), Ningbo S&T Innovation 2025 Major Special Programme (2018B10055), Ningbo Municipal Science and Technology Innovative Research Team (2015B11002, 2016B10005) and CAS Key Project of Frontier Science Research (QYZDB-SSW-SYS030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shulin Song or Ziyi Ge.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2020_9866_MOESM1_ESM.docx

A Universal Tactic of Using Lewis-Base Polymer-CNTs composites as Additives for High Performance cm2-sized and Flexible Perovskite Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Sun, J., Jiang, XF. et al. A universal tactic of using Lewis-base polymer-CNTs composites as additives for high performance cm2-sized and flexible perovskite solar cells. Sci. China Chem. 64, 281–292 (2021). https://doi.org/10.1007/s11426-020-9866-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9866-6

Navigation